Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly dist...Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly distributed features because dense features occupy excessive weight.Herein,a new human visual attention mechanism for point-and-line stereo visual odometry,which is called point-line-weight-mechanism visual odometry(PLWM-VO),is proposed to describe scene features in a global and balanced manner.A weight-adaptive model based on region partition and region growth is generated for the human visual attention mechanism,where sufficient attention is assigned to position-distinctive objects(sparse features in the environment).Furthermore,the sum of absolute differences algorithm is used to improve the accuracy of initialization for line features.Compared with the state-of-the-art method(ORB-VO),PLWM-VO show a 36.79%reduction in the absolute trajectory error on the Kitti and Euroc datasets.Although the time consumption of PLWM-VO is higher than that of ORB-VO,online test results indicate that PLWM-VO satisfies the real-time demand.The proposed algorithm not only significantly promotes the environmental adaptability of visual odometry,but also quantitatively demonstrates the superiority of the human visual attention mechanism.展开更多
图像质量的客观评价方法研究在实现图像质量评价仪器化的过程中起到决定性的作用。在分析最新全参考图像质量评价算法:特征相似法(feature similarity,FSIM)的基础上,利用对比敏感度函数(contrast sensitivity function,CSF)算子以及离...图像质量的客观评价方法研究在实现图像质量评价仪器化的过程中起到决定性的作用。在分析最新全参考图像质量评价算法:特征相似法(feature similarity,FSIM)的基础上,利用对比敏感度函数(contrast sensitivity function,CSF)算子以及离散余弦变换(discrete cosine transform,DCT)域的对比度掩盖效应,提出了一种改进的FSIM图像质量评价方法。该方法具有FSIM算法简单、高效等特性,同时又充分体现人眼视觉特性,更好地反映了人的主观感受。LIVE(laboratory for image and video engi-neering)测试数据集的实验结果证明,该方法在非线性回归后相关系数、斯皮尔曼相关系数、线外率等指标方面均优于传统的其他图像质量评价算法。展开更多
基金Supported by Tianjin Municipal Natural Science Foundation of China(Grant No.19JCJQJC61600)Hebei Provincial Natural Science Foundation of China(Grant Nos.F2020202051,F2020202053).
文摘Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly distributed features because dense features occupy excessive weight.Herein,a new human visual attention mechanism for point-and-line stereo visual odometry,which is called point-line-weight-mechanism visual odometry(PLWM-VO),is proposed to describe scene features in a global and balanced manner.A weight-adaptive model based on region partition and region growth is generated for the human visual attention mechanism,where sufficient attention is assigned to position-distinctive objects(sparse features in the environment).Furthermore,the sum of absolute differences algorithm is used to improve the accuracy of initialization for line features.Compared with the state-of-the-art method(ORB-VO),PLWM-VO show a 36.79%reduction in the absolute trajectory error on the Kitti and Euroc datasets.Although the time consumption of PLWM-VO is higher than that of ORB-VO,online test results indicate that PLWM-VO satisfies the real-time demand.The proposed algorithm not only significantly promotes the environmental adaptability of visual odometry,but also quantitatively demonstrates the superiority of the human visual attention mechanism.
文摘图像质量的客观评价方法研究在实现图像质量评价仪器化的过程中起到决定性的作用。在分析最新全参考图像质量评价算法:特征相似法(feature similarity,FSIM)的基础上,利用对比敏感度函数(contrast sensitivity function,CSF)算子以及离散余弦变换(discrete cosine transform,DCT)域的对比度掩盖效应,提出了一种改进的FSIM图像质量评价方法。该方法具有FSIM算法简单、高效等特性,同时又充分体现人眼视觉特性,更好地反映了人的主观感受。LIVE(laboratory for image and video engi-neering)测试数据集的实验结果证明,该方法在非线性回归后相关系数、斯皮尔曼相关系数、线外率等指标方面均优于传统的其他图像质量评价算法。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60672135)陕西省教育厅资助科研课题(the Re- search Project of Department of Education of Shaanxi ProvinceChina under Grant No.07JK180)