ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuratio...ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.展开更多
Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical componen...Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical components can instantly cause the overall failure in the structure.More and more scholars have taken the fail-safe design into consideration when conducting topology optimization.A lot of good designs have been obtained in their research,though limited regarding minimizing structural compliance(maximizing stiffness)with given amount of material.In terms of practical engineering applications considering fail-safe design,it is more meaningful to seek for the lightweight structure with enough stiffness to resist various component failures and/or to meet multiple design requirements,than the stiffest structure only.Thus,this paper presents a fail-safe topology optimization model for minimizing structural weight with respect to stress and displacement constraints.The optimization problem is solved by utilizing the independent continuous mapping(ICM)method combined with the dual sequence quadratic programming(DSQP)algorithm.Special treatments are applied to the constraints,including converting local stress constraints into a global structural strain energy constraint and expressing the displacement constraint explicitly with approximations.All of the constraints are nondimensionalized to avoid numerical instability caused by great differences in constraint magnitudes.The optimized results exhibit more complex topological configurations and higher redundancy to resist local failures than the traditional optimization designs.This paper also shows how to find the worst failure region,which can be a good reference for designers in engineering.展开更多
采用指数类函数为快滤函数的高精度逼近ICM(independent continuous and mapping)方法,建立了以结构重量为目标,应力和位移共同约束下的连续体结构拓扑优化模型.利用结构畸变比能的方法全局化应力约束,单位虚载荷法显式化位移约束,归一...采用指数类函数为快滤函数的高精度逼近ICM(independent continuous and mapping)方法,建立了以结构重量为目标,应力和位移共同约束下的连续体结构拓扑优化模型.利用结构畸变比能的方法全局化应力约束,单位虚载荷法显式化位移约束,归一化约束以解决约束限数量级不一致的问题.针对不同性态的过滤函数,给出了指数类快滤函数参数的取值方法.单工况和多工况的算例表明了高精度逼近的ICM方法处理多种约束下连续体结构拓扑优化的可行性与有效性.展开更多
基金supported by the National Natural Science Foundation of China(10472003)Beijing Natural Science(3002002)+1 种基金Beijing Educational Committee Foundations(KM200410005019)Suspensofled by American MSC Company.
文摘ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.
基金This work showed in this paper has been supported by the National Natural Science Foundation of China(Grant 11872080).
文摘Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical components can instantly cause the overall failure in the structure.More and more scholars have taken the fail-safe design into consideration when conducting topology optimization.A lot of good designs have been obtained in their research,though limited regarding minimizing structural compliance(maximizing stiffness)with given amount of material.In terms of practical engineering applications considering fail-safe design,it is more meaningful to seek for the lightweight structure with enough stiffness to resist various component failures and/or to meet multiple design requirements,than the stiffest structure only.Thus,this paper presents a fail-safe topology optimization model for minimizing structural weight with respect to stress and displacement constraints.The optimization problem is solved by utilizing the independent continuous mapping(ICM)method combined with the dual sequence quadratic programming(DSQP)algorithm.Special treatments are applied to the constraints,including converting local stress constraints into a global structural strain energy constraint and expressing the displacement constraint explicitly with approximations.All of the constraints are nondimensionalized to avoid numerical instability caused by great differences in constraint magnitudes.The optimized results exhibit more complex topological configurations and higher redundancy to resist local failures than the traditional optimization designs.This paper also shows how to find the worst failure region,which can be a good reference for designers in engineering.
文摘采用指数类函数为快滤函数的高精度逼近ICM(independent continuous and mapping)方法,建立了以结构重量为目标,应力和位移共同约束下的连续体结构拓扑优化模型.利用结构畸变比能的方法全局化应力约束,单位虚载荷法显式化位移约束,归一化约束以解决约束限数量级不一致的问题.针对不同性态的过滤函数,给出了指数类快滤函数参数的取值方法.单工况和多工况的算例表明了高精度逼近的ICM方法处理多种约束下连续体结构拓扑优化的可行性与有效性.