期刊文献+
共找到2,543篇文章
< 1 2 128 >
每页显示 20 50 100
Metallothionein Genes in the Nematode Caenorhabditis elegans and Metal Inducibility in Mammalian Culture Cells 被引量:1
1
作者 FUMIHIKO KUGAWA HIROKO YAMAMOTO +5 位作者 SHIGEHIRO OSADA MASATADA AOKI MASAYOSHI IMAGAWA AND TSUTOMU NISHIHARA (College of Pharmacy, Nihon University, 7-7-1 Narashino-dai, Funabashi,Chiba 274 and Faculty of Pharmaceutical Sciences, Osaka University,1-6 Yama 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1994年第3期222-231,共10页
Genomic DNAs of metallothionein Ⅰ and Ⅱ in Caenorhabditis elegans (CeMT-Ⅰand CeMT-Ⅱ) were isolated by YAC library/polytene filter hybridization followed by subcloning of corresponding cosmid clones. Both genes are... Genomic DNAs of metallothionein Ⅰ and Ⅱ in Caenorhabditis elegans (CeMT-Ⅰand CeMT-Ⅱ) were isolated by YAC library/polytene filter hybridization followed by subcloning of corresponding cosmid clones. Both genes are mapped at chromosome V. Although the similarities of 5'-flanking regions and coding regions have shown only 55-58%, the introns are split at the same position in both genes, indicating that these two genes are originally from the same gene. While several metal responsive elements are conserved among eukaryotes, only one metal responsive element was found in the promoter region in CeMT-Ⅱ and not in CeMT-Ⅰ. Indced, neither of 5'-flanking regions of CeMT-Ⅰ nor CeMT-Ⅱ connected to chloramphenicol acetyltransferase reporter gene is responsive to heavy metals in mammalian culture cells by transient transfection analysis. These results would suggest that the metal regulatory factors in C.elegans might be different from those conserved in invertebrates and vertebrates, although the MTs in C elegans revealed the similarities to mammalian MTs in several points 展开更多
关键词 MT gene Metallothionein Genes in the Nematode Caenorhabditis elegans and Metal inducibility in Mammalian Culture Cells
下载PDF
Cell reprogramming therapy for Parkinson’s disease 被引量:5
2
作者 Wenjing Dong Shuyi Liu +1 位作者 Shangang Li Zhengbo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2444-2455,共12页
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ... Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease. 展开更多
关键词 animal models ASTROCYTES AUTOLOGOUS cell reprogramming cell therapy direct lineage reprogramming dopaminergic neurons induced pluripotent stem cells non-human primates Parkinson’s disease
下载PDF
Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury 被引量:3
3
作者 Mou Gao Qin Dong +4 位作者 Zhijun Yang Dan Zou Yajuan Han Zhanfeng Chen Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期872-880,共9页
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regen... Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury. 展开更多
关键词 closed head injury Ctbp2 induced neural stem cell lncRNA H19 miR-325-3p NEUROGENESIS
下载PDF
Current perspectives on mesenchymal stem cells as a potential therapeutic strategy for non-alcoholic fatty liver disease 被引量:4
4
作者 Yan Jiang Narazah Mohd Yusoff +2 位作者 Jiang Du Emmanuel Jairaj Moses Jun-Tang Lin 《World Journal of Stem Cells》 SCIE 2024年第7期760-772,共13页
Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially pre... Non-alcoholic fatty liver disease(NAFLD)has emerged as a significant health challenge,characterized by its widespread prevalence,intricate natural progression and multifaceted pathogenesis.Although NAFLD initially presents as benign fat accumulation,it may progress to steatosis,non-alcoholic steatohepatitis,cirrhosis,and hepatocellular carcinoma.Mesenchymal stem cells(MSCs)are recognized for their intrinsic self-renewal,superior biocompatibility,and minimal immunogenicity,positioning them as a therapeutic innovation for liver diseases.Therefore,this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics,and support the development of MSC-based therapy in the treatment of NAFLD. 展开更多
关键词 Non-alcoholic induced fatty liver disease Mesenchymal stem cells Lipid accumulation INFLAMMATION Oxidative stress Endoplasmic reticulum stress FIBROSIS
下载PDF
The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury 被引量:3
5
作者 Dingyue Ju Chuanming Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1751-1758,共8页
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t... Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury. 展开更多
关键词 BIOMATERIALS embryonic stem cells induced pluripotent stem cells mesenchymal stem cells nerve regeneration spinal cord injury stem cell therapy stem cells three-dimensional bioprinting
下载PDF
Transplantation of fibrin-thrombin encapsulated human induced neural stem cells promotes functional recovery of spinal cord injury rats through modulation of the microenvironment 被引量:2
6
作者 Sumei Liu Baoguo Liu +4 位作者 Qian Li Tianqi Zheng Bochao Liu Mo Li Zhiguo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期440-446,共7页
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells a... Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats. 展开更多
关键词 biomaterial FIBRINOGEN functional recovery induced neural stem cell transplantation MICROENVIRONMENT MICROGLIA spinal cord injury THROMBIN
下载PDF
Rebuilding insight into the pathophysiology of Alzheimer’s disease through new blood-brain barrier models 被引量:2
7
作者 Kinya Matsuo Hideaki Nshihara 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1954-1960,共7页
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur... The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research. 展开更多
关键词 Alzheimer’s disease blood-brain barrier human induced pluripotent stem cells
下载PDF
Origin of the presence/absence variation of the LTIA1/LTIA2 mini-ribonucleaseⅢgenes required for low-temperature growth in rice 被引量:1
8
作者 Jing Yang Yu Peng +5 位作者 Limin Mi Aiqing Sun Ping Li Yan Wang Yi Zhang Sheng Teng 《The Crop Journal》 SCIE CSCD 2024年第5期1459-1470,共12页
A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of ... A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of the plant.At low temperature,LTIA1 and LTIA2 redundantly affect chlorophyll levels,non-photochemical quenching,photosynthetic quantum yield of PSⅡand seedling growth.LTIA1 and LTIA2 proteins are involved in splicing of atp F and the biogenesis of 16S and 23S rRNA in chloroplasts.Presence/absence variation of LTIA1,the ancestral copy,was found only in japonica but that of LTIA2 in all rice subgroups.Accessions with LTIA2 presence tended to be distributed more remote from the equator compared to those with LTIA2 absence.LTIA2 duplicated from LTIA1 at the early stage of divergence of the AA genome Oryza species but deleted againin O.nivara.In cultivated rice,absence of LTIA2 is derived from O.nivara.LTIA1 absence occurred more recently in japonica. 展开更多
关键词 RICE Low temperature induced albino Mini-RNaseⅢ Presence/Absence variations Evolution
下载PDF
Modelling of the elastoplastic behaviour of the bio-cemented soils using an extended Modified Cam Clay model 被引量:1
9
作者 Xuerui Wang Christian B.Silbermann +1 位作者 Thomas Nagel Udo Nackenhorst 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2184-2197,共14页
An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the inc... An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development. 展开更多
关键词 Microbially induced calcite precipitation(MICP) Elastoplasticity Modified cam clay(MCC) OPENGEOSYS MFront Contraction-dilation transition
下载PDF
Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers 被引量:1
10
作者 Huarong Fan Yubing Si +3 位作者 Yiming Zhang Fulong Zhu Xin Wang Yongzhu Fu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期565-572,共8页
Lithium-sulfur batteries(LSBs)with high energy densities have been demonstrated the potential for energy-intensive demand applications.However,their commercial applicability is hampered by hysteretic electrode reactio... Lithium-sulfur batteries(LSBs)with high energy densities have been demonstrated the potential for energy-intensive demand applications.However,their commercial applicability is hampered by hysteretic electrode reaction kinetics and the shuttle effect of lithium polysulfides(LiPSs).In this work,an interlayer consisting of high-entropy metal oxide(Cu_(0.7)Fe_(0.6)Mn_(0.4)Ni_(0.6)Sn_(0.5))O_(4) grown on carbon nanofibers(HEO/CNFs)is designed for LSBs.The CNFs with highly porous networks provide transport pathways for Li^(+) and e^(-),as well as a physical sieve effect to limit LiPSs crossover.In particular,the grapevine-like HEO nanoparticles generate metal-sulfur bonds with LiPSs,efficiently anchoring active materials.The unique structure and function of the interlayer enable the LSBs with superior electrochemical performance,i.e.,the high specific capacity of 1381 mAh g^(-1) at 0.1 C and 561 mAh g^(-1) at 6 C.This work presents a facile strategy for exploiting high-performance LSBs. 展开更多
关键词 Electrospun carbon nanofibers Grapevine-like morphology Hierarchical physical sieve effect High-entropy induced chemisorption Lithium-sulfur battery
下载PDF
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
11
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) Coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
下载PDF
Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury 被引量:1
12
作者 Jingzhou Liu Xin Xin +8 位作者 Jiejie Sun Yueyue Fan Xun Zhou Wei Gong Meiyan Yang Zhiping Li Yuli Wang Yang Yang Chunsheng Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期629-635,共7页
Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogr... Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue.However,previous studies have reported inconsistent results.In this study,an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects.The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes.Moreover,neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury.In summary,this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury. 展开更多
关键词 AAV9P1 ASTROCYTES astrocyte-to-neuron conversion GFAP promoter glial scar induced neurons neuronal reprogramming P1 peptide PTBP1 traumatic brain injury
下载PDF
Targeted anti-cancer therapy: Co-delivery of VEGF siRNA and Phenethyl isothiocyanate (PEITC) via cRGD-modified lipid nanoparticles for enhanced anti-angiogenic efficacy 被引量:1
13
作者 Bao Li Haoran Niu +10 位作者 Xiaoyun Zhao Xiaoyu Huang Yu Ding Ke Dang Tianzhi Yang Yongfeng Chen Jizhuang Ma Xiaohong Liu Keda Zhang Huichao Xie Pingtian Ding 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期170-187,共18页
Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ... Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics. 展开更多
关键词 ANTI-ANGIOGENESIS Tumor apoptosis Nanoparticles VEGF siRNA Hypoxia inducible factor(HIF)-1 protein Phenethyl isothi ocyanate(PEITC)
下载PDF
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways 被引量:1
14
作者 Sen Zeng Honglan Yang +8 位作者 Binghao Wang Yongzhi Xie Ke Xu Lei Liu Wanqian Cao Xionghao Liu Beisha Tang Mujun Liu Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期205-211,共7页
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus... Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction. 展开更多
关键词 antisense oligonucleotides cell cycle arrest Charcot-Marie-Tooth disease 2Z induced pluripotent stem cells MAPK/ERK PI3K/Akt PROLIFERATION spinal muscular atrophy-like
下载PDF
Recent advances in the diagnosis of drug-induced liver injury 被引量:1
15
作者 Taqwa Ahmed Jawad Ahmad 《World Journal of Hepatology》 2024年第2期186-192,共7页
Drug-induced liver injury(DILI)is a major problem in the United States,commonly leading to hospital admission.Diagnosing DILI is difficult as it is a diagnosis of exclusion requiring a temporal relationship between dr... Drug-induced liver injury(DILI)is a major problem in the United States,commonly leading to hospital admission.Diagnosing DILI is difficult as it is a diagnosis of exclusion requiring a temporal relationship between drug exposure and liver injury and a thorough work up for other causes.In addition,DILI has a very variable clinical and histologic presentation that can mimic many different etiologies of liver disease.Objective scoring systems can assess the probability that a drug caused the liver injury but liver biopsy findings are not part of the criteria used in these systems.This review will address some of the recent updates to the scoring systems and the role of liver biopsy in the diagnosis of DILI. 展开更多
关键词 Drug induced liver injury Liver biopsy DIAGNOSIS RUCAM RECAM
下载PDF
Acute worsening of microvascular complications of diabetes mellitus during rapid glycemic control:The pathobiology and therapeutic implications 被引量:1
16
作者 Dania Blaibel Cornelius James Fernandez Joseph M Pappachan 《World Journal of Diabetes》 SCIE 2024年第3期311-317,共7页
While chronic hyperglycaemia resulting from poorly controlled diabetes mellitus(DM)is a well-known precursor to complications such as diabetic retinopathy,neuropathy(including autonomic neuropathy),and nephropathy,a p... While chronic hyperglycaemia resulting from poorly controlled diabetes mellitus(DM)is a well-known precursor to complications such as diabetic retinopathy,neuropathy(including autonomic neuropathy),and nephropathy,a paradoxical intensification of these complications can rarely occur with aggressive glycemic management resulting in a rapid reduction of glycated haemoglobin.Although,acute onset or worsening of retinopathy and treatment induced neuropathy of diabetes are more common among these complications,rarely other problems such as albuminuria,diabetic kidney disease,Charcot’s neuroarthropathy,gastroparesis,and urinary bladder dysfunction are also encountered.The World Journal of Diabetes recently published a rare case of all these complications,occurring in a young type 1 diabetic female intensely managed during pregnancy,as a case report by Huret et al.It is essential to have a comprehensive understanding of the pathobiology,prevalence,predisposing factors,and management strategies for acute onset,or worsening of microvascular complications when rapid glycemic control is achieved,which serves to alleviate patient morbidity,enhance disease management compliance,and possibly to avoid medico-legal issues around this rare clinical problem.This editorial delves into the dynamics surrounding the acute exacerbation of microvascular complications in poorly controlled DM during rapid glycaemic control. 展开更多
关键词 Diabetes mellitus Microvascular complications Diabetic retinopathy Treatment induced neuropathy of diabetes Diabetic nephropathy Charcot’s neuropathy
下载PDF
Driving pressure in mechanical ventilation:A review 被引量:2
17
作者 Syeda Farheen Zaidi Asim Shaikh +2 位作者 Daniyal Aziz Khan Salim Surani Iqbal Ratnani 《World Journal of Critical Care Medicine》 2024年第1期15-27,共13页
Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP lev... Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed. 展开更多
关键词 Driving pressure Acute respiratory distress syndrome MORTALITY Positive end-expiratory pressure Ventilator induced lung injury Mechanical ventilation
下载PDF
Biomineralization and mineralization using microfluidics:A comparison study
18
作者 Yang Xiao Xiang He +3 位作者 Guoliang Ma Chang Zhao Jian Chu Hanlong Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期661-669,共9页
Biomineralization through microbial process has attracted great attention in the field of geotechnical engineering due to its ability to bind granular materials,clog pores,and seal fractures.Although minerals formed b... Biomineralization through microbial process has attracted great attention in the field of geotechnical engineering due to its ability to bind granular materials,clog pores,and seal fractures.Although minerals formed by biomineralization are generally the same as that by mineralization,their mechanical behaviors show a significant discrepancy.This study aims to figure out the differences between biomineralization and mineralization processes by visualizing and tracking the formation of minerals using microfluidics.Both biomineralization and mineralization processes occurred in the Y-shaped sandcontaining microchip that mimics the underground sand layers.Images from different areas in the reaction microchannel of microchips were captured to directly compare the distribution of minerals.Crystal size and numbers from different reaction times were measured to quantify the differences between biomineralization and mineralization processes in terms of crystal kinetics.Results showed that the crystals were precipitated in a faster and more uncontrollable manner in the mineralization process than that in the biomineralization process,given that those two processes presented similar precipitation stages.In addition,a more heterogeneous distribution of crystals was observed during the biomineralization process.The precipitation behaviors were further explained by the classical nucleation crystal growth theory.The present microfluidic tests could advance the understanding of biomineralization and provide new insight into the optimization of biocementation technology. 展开更多
关键词 Microbially induced carbonate precipitation (MICP) Biocementation CRYSTAL Calcium carbonate NUCLEATION
下载PDF
Versatile techniques based on the Thermionic Vacuum Arc(TVA)and laser-induced TVA methods for Mg/Mg:X thin films deposition-A review
19
作者 R.Vladoiu A.Mandes +4 位作者 V.Dinca M.Tichy P.Kudrna C.C.Ciobotaru S.Polosan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3115-3134,共20页
Magnesium and magnesium thin alloy films were deposited using a thermionic vacuum arc(TVA),which has multiple applications in the field of metallic electrodes for diodes and batteries or active corrosion protection.An... Magnesium and magnesium thin alloy films were deposited using a thermionic vacuum arc(TVA),which has multiple applications in the field of metallic electrodes for diodes and batteries or active corrosion protection.An improved laser-induced TVA(LTVA)method favors the crystallization processes of the deposited magnesium-based films because the interaction between laser and plasma discharge changes the thermal energy during photonic processes due to the local temperature variation.Plasma diagnosis based on current discharge measurements suggests an inelastic collision between the laser beam and the atoms from the plasma discharge.The morphology and surface properties of the obtained thin films differ between these two methods.While the amorphous character is dominant for TVA thin films,enabling a smooth surface,the LTVA method produces rough surfaces with prominent crystallinity,less hydrophobic character and lower surface energy.The smooth surfaces obtained by the TVA methods produce metallic electrodes with good electrical contact,ensuring better diodes and battery charge transport.Both methods allow uniform magnesium alloys to be obtained,but the laser used in the LTVA on the discharge plasma controls the added metal or element ratio. 展开更多
关键词 Magnesium Magnesium alloys Thermionic vacuum arc Laser induced Thin films
下载PDF
Understanding poromechanical response of a biogenic coalbed methane reservoir
20
作者 Rohit Pandey Satya Harpalani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期32-50,共19页
Biogenic coalbed methane(BCBM)reservoirs aim to produce methane from in situ coal deposits following microbial conversion of coal.Success of BCBM reservoirs requires economic methane production within an acceptable ti... Biogenic coalbed methane(BCBM)reservoirs aim to produce methane from in situ coal deposits following microbial conversion of coal.Success of BCBM reservoirs requires economic methane production within an acceptable timeframe.The work reported here quantifies the findings of previously published qualitative work,where it was found that bioconversion induces strains in the pore,matrix and bulk scales.Using imaging and dynamic strain monitoring techniques,the bioconversion induced strain is quantified here.To understand the effect of these strains from a reservoir geomechanics perspective,a corresponding poromechanical model is developed.Furthermore,findings of imaging experiments are validated using core-flooding flow experiments.Finally,expected field-scale behavior of the permeability response of a BCBM operation is modeled and analyzed.The results of the study indicated that,for Illinois coals,bioconversion induced strains result in a decrease in fracture porosity,resulting in a detrimental permeability drop in excess of 60%during bioconversion,which festers itself exponentially throughout its producing life.Results indicate that reservoirs with high initial permeability that will support higher Darcian flowrates,would be better suited for coal bioconversion,thereby providing a site-selection criteria for BCBM operations. 展开更多
关键词 Coal bioconversion Poromechanical model Reservoir response Bioconversion induced strain
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部