Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and ...Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.展开更多
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge...With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.展开更多
Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enh...Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a“network reaching everywhere and service is ubiquitous”,has become the consensus of the industry’s development and the focus of global scientific and technological innovation.展开更多
Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enh...Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a"network reaching everywhere and service is ubiquitous",has become the consensus of the industry's development and the focus of global scientific and technological innovation.展开更多
Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concern...Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concerns about data security and personal privacy protection. To alleviate these concerns, blind signature technology has emerged as an effective method to solve blindness and unforgeability. Unfortunately, most existing blind signature schemes suffer from the security risk of key leakage. In addition, traditional blind signature schemes are also vulnerable to quantum computing attacks. Therefore, it remains a crucial and ongoing challenge to explore the construction of key-secure, quantum-resistant blind signatures. In this paper, we introduce lattice-based forward-secure blind signature (LFSBS), a lattice-based forward-secure blind signature scheme for medical privacy preservation in BIoMT. LFSBS achieves forward security by constructing a key evolution mechanism using a binary tree structure. This mechanism ensures that even if future encryption keys are leaked, past data can still remain secure. Meanwhile, LFSBS realizes post-quantum security based on the hardness assumption of small integer solution (SIS), making it resistant to potential quantum computing attacks. In addition, we formally define and prove the security of LFSBS in a random oracle model, including blindness and forward-secure unforgeability. Comprehensive performance evaluation shows that LFSBS performs well in terms of computational overhead, with a reduction of 22%–73% compared to previous schemes.展开更多
As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expo...As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.展开更多
The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These in...The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.展开更多
With the development of Internet of things technology,the real-time collection and transmission of meteorological data has become particularly important.Especially in response to emergencies such as natural disasters,...With the development of Internet of things technology,the real-time collection and transmission of meteorological data has become particularly important.Especially in response to emergencies such as natural disasters,it is very important to improve the efficiency of decision-making by quickly obtaining accurate meteorological observation data.However,the traditional method of meteorological data collection and transmission has a large delay in data acquisition due to the conversion of public network and internal network,which affects the timeliness of emergency decision-making.This paper proposes a solution based on the Internet of things platform combined with MQTT protocol,which aims to realize the efficient and reliable real-time collection and transmission of meteorological data,shorten the data acquisition time,improve the emergency response speed,and meet the needs of temporary observation.展开更多
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ...Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.展开更多
The Internet of MedicalThings(IoMT)connects healthcare devices and sensors to the Internet,driving transformative advancements in healthcare delivery.However,expanding IoMT infrastructures face growing security threat...The Internet of MedicalThings(IoMT)connects healthcare devices and sensors to the Internet,driving transformative advancements in healthcare delivery.However,expanding IoMT infrastructures face growing security threats,necessitating robust IntrusionDetection Systems(IDS).Maintaining the confidentiality of patient data is critical in AI-driven healthcare systems,especially when securing interconnected medical devices.This paper introduces SNN-IoMT(Stacked Neural Network Ensemble for IoMT Security),an AI-driven IDS framework designed to secure dynamic IoMT environments.Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron(MLP),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM),the model optimizes data management and integration while ensuring system scalability and interoperability.Trained on the WUSTL-EHMS-2020 and IoT-Healthcare-Security datasets,SNN-IoMT surpasses existing IDS frameworks in accuracy,precision,and detecting novel threats.By addressing the primary challenges in AI-driven healthcare systems,including privacy,reliability,and ethical data management,our approach exemplifies the importance of AI to enhance security and trust in IoMT-enabled healthcare.展开更多
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape...The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.展开更多
With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connectio...With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connection of various physical devices,sensors,and machines,it realizes information intercommunication and remote control among devices,significantly enhancing the convenience and efficiency of work and life.However,the rapid development of the IoT has also brought serious security problems.IoT devices have limited resources and a complex network environment,making them one of the important targets of network intrusion attacks.Therefore,from the perspective of deep learning,this paper deeply analyzes the characteristics and key points of IoT intrusion detection,summarizes the application advantages of deep learning in IoT intrusion detection,and proposes application strategies of typical deep learning models in IoT intrusion detection so as to improve the security of the IoT architecture and guarantee people’s convenient lives.展开更多
The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio m...The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods.展开更多
Background:Resilience is crucial for medical college students to thrive in the highly stressful environment of medical education.However,the prevalence of problematic internet use(PIU)in this population may negatively...Background:Resilience is crucial for medical college students to thrive in the highly stressful environment of medical education.However,the prevalence of problematic internet use(PIU)in this population may negatively impact their resilience.This study investigated the influence of problematic online gaming(PG)and problematic social media use(PSMU)on the resilience of medical college students in China.Methods:A sample of 5075 first-year medical college students from four Chinese universities was studied.PG served as the independent variable,resilience as the dependent variable,fatigue as the mediator,and PSMU as the moderator.Structural equation modeling was conducted using LISREL 8.80.Additionally,a moderated mediation model was evaluated using the jAMM module in jamovi 2.6.13.Results:The study’s findings revealed significant negative correlations between resilience and the variables of PG,PSMU,and fatigue.Fatigue mediated the relationship between PG and resilience(B=−0.04,95%CI=[−0.05,−0.03]).PSMU moderated the direct relationship between PG and resilience with the interaction term PG×PSMU significant(B=−0.004,t=−6.501,p<0.001)and the first stage(PG→fatigue)of the mediation with PG×PSMU significant(B=0.055,t=8.351,p<0.001).The detrimental effects of PG on resilience were more pronounced among individuals with lower levels of PSMU.Conclusion:This study concluded that addressing PIU,particularly PG,is essential for fostering resilience in medical college students.While PSMU itself is maladaptive,the underlying social media engagement may serve a protective role through social support in mitigating the adverse effects of PG on resilience.展开更多
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ap...The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.展开更多
For students in higher vocational colleges,the"Internet+"Innovation and Entrepreneurship Competition not only provides them with a rare platform for communication and learning but also significantly promotes...For students in higher vocational colleges,the"Internet+"Innovation and Entrepreneurship Competition not only provides them with a rare platform for communication and learning but also significantly promotes their comprehensive development and substantially enhances their innovative and entrepreneurial capabilities.This paper explores the collaboration models between higher vocational colleges and industries in advancing the"Internet+"Innovation and Entrepreneurship Competition,analyzes the impact of the competition on the educational systems and curriculum design of higher vocational colleges,and proposes pathways for research and practice on innovative and entrepreneurial talent cultivation models,aiming to cultivate high-quality and high-skilled talents who can adapt to industrial transformation and upgrading and achieve high-quality development.展开更多
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has...The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.展开更多
Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible t...Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.展开更多
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide...The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
基金funded by a Grant-in-Aid for Scientific Research(B)(Japan Society for The Promotion of Science,21H02849)Grant-in-Aid for Scientific Research(C)(Japan Society for The Promotion of Science,23K07013)+2 种基金Grant-in-Aid for Transformative Research Areas(A)(Japan Society for The Promotion of Science,JP21H05173)Grant-in-Aid by the Smoking Research FoundationGrant-in-Aid by the Telecommunications Advancement Foundation.
文摘Background Ongoing debates question the harm of internet use with the evolving technology,as many individuals transition from regular to problematic internet use(PIU).The habenula(Hb),located between the thalamus and the third ventricle,is implicated in various psychiatric disorders.In addition,personality features have been suggested to play a role in the pathophysiology of PIU.Aims This study aimed to investigate Hb volumetry in individuals with subclinical PIU and the mediating effect of personality traits on this relationship.Methods 110 healthy adults in this cross-sectional study underwent structural magnetic resonance imaging.Hb segmentation was performed using a deep learning technique.The Internet Addiction Test(IAT)and the NEO Five-Factor Inventory were used to assess the PIU level and personality,respectively.Partial Spearman's correlation analyses were performed to explore the reiationships between Hb volumetry,IAT and NEO.Multiple regression analysis was applied to identify personality traits that predict IAT scores.The significant trait was then treated as a mediator between Hb volume and IAT correlation in mediation analysis with a bootstrap value of 5000.Results Relative Hb volume was negatively correlated with IAT scores(partial rho=-0.142,p=0.009).The IAT score was positively correlated with neuroticism(partial rho=0.430,p<0.001)and negatively correlated with extraversion,agreeableness and conscientiousness(partial rho=-0.213,p<0.001;partial rho=-0.279,p<0.001;and partial rho=-0.327,p<0.001).There was a significant indirect effect of Hb volume on this model(β=-0.061,p=0.048,boot 95%confidence interval:-0.149 to-0.001).Conclusions This study uncovered a crucial link between reduced Hb volume and heightened PIU.Our findings highlight neuroticism as a key risk factor for developing PIU.Moreover,neuroticism was shown to mediate the relationship between Hb volume and PIU tendency,offering valuable insight into the complexities of this interaction.
基金supported by the Shandong Province Science and Technology Project(2023TSGC0509,2022TSGC2234)Qingdao Science and Technology Plan Project(23-1-5-yqpy-2-qy)Open Topic Grants of Anhui Province Key Laboratory of Intelligent Building&Building Energy Saving,Anhui Jianzhu University(IBES2024KF08).
文摘With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions.
文摘Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a“network reaching everywhere and service is ubiquitous”,has become the consensus of the industry’s development and the focus of global scientific and technological innovation.
文摘Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a"network reaching everywhere and service is ubiquitous",has become the consensus of the industry's development and the focus of global scientific and technological innovation.
基金funded by the Yunnan Key Laboratory of Blockchain Application Technology(202105AG070005,202305AG340008)&YNB202301,NSFC(Grant Nos.72293583,72293580,62476007,62176273,62271234)the Open Foundation of State Key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2024-1-06)+2 种基金the Project of Science and Technology Major Project of Yunnan Province(202302AF080006)Open Foundation of State Key Laboratory of Public Big Data(Guizhou University)under Grant No.PBD2022-16Double First-Class Project for Collaborative Innovation Achievements inDisciplines Construction in Heilongjiang Province under Grant No.GXCG2022-054.
文摘Blockchain-enabled Internet of Medical Things (BIoMT) has attracted significant attention from academia and healthcare organizations. However, the large amount of medical data involved in BIoMT has also raised concerns about data security and personal privacy protection. To alleviate these concerns, blind signature technology has emerged as an effective method to solve blindness and unforgeability. Unfortunately, most existing blind signature schemes suffer from the security risk of key leakage. In addition, traditional blind signature schemes are also vulnerable to quantum computing attacks. Therefore, it remains a crucial and ongoing challenge to explore the construction of key-secure, quantum-resistant blind signatures. In this paper, we introduce lattice-based forward-secure blind signature (LFSBS), a lattice-based forward-secure blind signature scheme for medical privacy preservation in BIoMT. LFSBS achieves forward security by constructing a key evolution mechanism using a binary tree structure. This mechanism ensures that even if future encryption keys are leaked, past data can still remain secure. Meanwhile, LFSBS realizes post-quantum security based on the hardness assumption of small integer solution (SIS), making it resistant to potential quantum computing attacks. In addition, we formally define and prove the security of LFSBS in a random oracle model, including blindness and forward-secure unforgeability. Comprehensive performance evaluation shows that LFSBS performs well in terms of computational overhead, with a reduction of 22%–73% compared to previous schemes.
基金supported in part by the National Natural Science Foundation of China under Grant No.61701197in part by the National Key Research and Development Program of China under Grant No.2021YFA1000500(4)in part by the 111 project under Grant No.B23008.
文摘As Internet of Vehicles(IoV)technology continues to advance,edge computing has become an important tool for assisting vehicles in handling complex tasks.However,the process of offloading tasks to edge servers may expose vehicles to malicious external attacks,resulting in information loss or even tampering,thereby creating serious security vulnerabilities.Blockchain technology can maintain a shared ledger among servers.In the Raft consensus mechanism,as long as more than half of the nodes remain operational,the system will not collapse,effectively maintaining the system’s robustness and security.To protect vehicle information,we propose a security framework that integrates the Raft consensus mechanism from blockchain technology with edge computing.To address the additional latency introduced by blockchain,we derived a theoretical formula for system delay and proposed a convex optimization solution to minimize the system latency,ensuring that the system meets the requirements for low latency and high reliability.Simulation results demonstrate that the optimized data extraction rate significantly reduces systemdelay,with relatively stable variations in latency.Moreover,the proposed optimization solution based on this model can provide valuable insights for enhancing security and efficiency in future network environments,such as 5G and next-generation smart city systems.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University via Grant No.(QU-APC-2025).
文摘The Internet of Things (IoT) and edge-assisted networking infrastructures are capable of bringing data processing and accessibility services locally at the respective edge rather than at a centralized module. These infrastructures are very effective in providing a fast response to the respective queries of the requesting modules, but their distributed nature has introduced other problems such as security and privacy. To address these problems, various security-assisted communication mechanisms have been developed to safeguard every active module, i.e., devices and edges, from every possible vulnerability in the IoT. However, these methodologies have neglected one of the critical issues, which is the prediction of fraudulent devices, i.e., adversaries, preferably as early as possible in the IoT. In this paper, a hybrid communication mechanism is presented where the Hidden Markov Model (HMM) predicts the legitimacy of the requesting device (both source and destination), and the Advanced Encryption Standard (AES) safeguards the reliability of the transmitted data over a shared communication medium, preferably through a secret shared key, i.e., , and timestamp information. A device becomes trusted if it has passed both evaluation levels, i.e., HMM and message decryption, within a stipulated time interval. The proposed hybrid, along with existing state-of-the-art approaches, has been simulated in the realistic environment of the IoT to verify the security measures. These evaluations were carried out in the presence of intruders capable of launching various attacks simultaneously, such as man-in-the-middle, device impersonations, and masquerading attacks. Moreover, the proposed approach has been proven to be more effective than existing state-of-the-art approaches due to its exceptional performance in communication, processing, and storage overheads, i.e., 13%, 19%, and 16%, respectively. Finally, the proposed hybrid approach is pruned against well-known security attacks in the IoT.
基金Supported by Wuzhou Science and Technology Planning Project(202202047).
文摘With the development of Internet of things technology,the real-time collection and transmission of meteorological data has become particularly important.Especially in response to emergencies such as natural disasters,it is very important to improve the efficiency of decision-making by quickly obtaining accurate meteorological observation data.However,the traditional method of meteorological data collection and transmission has a large delay in data acquisition due to the conversion of public network and internal network,which affects the timeliness of emergency decision-making.This paper proposes a solution based on the Internet of things platform combined with MQTT protocol,which aims to realize the efficient and reliable real-time collection and transmission of meteorological data,shorten the data acquisition time,improve the emergency response speed,and meet the needs of temporary observation.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62025110 and 62101308).
文摘Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.
文摘The Internet of MedicalThings(IoMT)connects healthcare devices and sensors to the Internet,driving transformative advancements in healthcare delivery.However,expanding IoMT infrastructures face growing security threats,necessitating robust IntrusionDetection Systems(IDS).Maintaining the confidentiality of patient data is critical in AI-driven healthcare systems,especially when securing interconnected medical devices.This paper introduces SNN-IoMT(Stacked Neural Network Ensemble for IoMT Security),an AI-driven IDS framework designed to secure dynamic IoMT environments.Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron(MLP),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM),the model optimizes data management and integration while ensuring system scalability and interoperability.Trained on the WUSTL-EHMS-2020 and IoT-Healthcare-Security datasets,SNN-IoMT surpasses existing IDS frameworks in accuracy,precision,and detecting novel threats.By addressing the primary challenges in AI-driven healthcare systems,including privacy,reliability,and ethical data management,our approach exemplifies the importance of AI to enhance security and trust in IoMT-enabled healthcare.
文摘The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.
基金the research result of the 2022 Municipal Education Commission Science and Technology Research Plan Project“Research on the Technology of Detecting Double-Surface Cracks in Concrete Lining of Highway Tunnels Based on Image Blast”(KJQN02202403)the first batch of school-level classroom teaching reform projects“Principles Applications of Embedded Systems”(23JG2166)the school-level reform research project“Continuous Results-Oriented Practice Research Based on BOPPPS Teaching Model-Taking the‘Programming Fundamentals’Course as an Example”(22JG332).
文摘With the rapid development of modern information technology,the Internet of Things(IoT)has been integrated into various fields such as social life,industrial production,education,and medical care.Through the connection of various physical devices,sensors,and machines,it realizes information intercommunication and remote control among devices,significantly enhancing the convenience and efficiency of work and life.However,the rapid development of the IoT has also brought serious security problems.IoT devices have limited resources and a complex network environment,making them one of the important targets of network intrusion attacks.Therefore,from the perspective of deep learning,this paper deeply analyzes the characteristics and key points of IoT intrusion detection,summarizes the application advantages of deep learning in IoT intrusion detection,and proposes application strategies of typical deep learning models in IoT intrusion detection so as to improve the security of the IoT architecture and guarantee people’s convenient lives.
文摘The increasing demand for radioauthorized applications in the 6G era necessitates enhanced monitoring and management of radio resources,particularly for precise control over the electromagnetic environment.The radio map serves as a crucial tool for describing signal strength distribution within the current electromagnetic environment.However,most existing algorithms rely on sparse measurements of radio strength,disregarding the impact of building information.In this paper,we propose a spectrum cartography(SC)algorithm that eliminates the need for relying on sparse ground-based radio strength measurements by utilizing a satellite network to collect data on buildings and transmitters.Our algorithm leverages Pix2Pix Generative Adversarial Network(GAN)to construct accurate radio maps using transmitter information within real geographical environments.Finally,simulation results demonstrate that our algorithm exhibits superior accuracy compared to previously proposed methods.
基金supported by General Education Project of the National Social Science Foundation in 2020:“Multi-Dimensional Reconstruction of Peer Review Mechanisms in the Evaluation of Scientific and Technological Talents in Universities(BIA200167).”。
文摘Background:Resilience is crucial for medical college students to thrive in the highly stressful environment of medical education.However,the prevalence of problematic internet use(PIU)in this population may negatively impact their resilience.This study investigated the influence of problematic online gaming(PG)and problematic social media use(PSMU)on the resilience of medical college students in China.Methods:A sample of 5075 first-year medical college students from four Chinese universities was studied.PG served as the independent variable,resilience as the dependent variable,fatigue as the mediator,and PSMU as the moderator.Structural equation modeling was conducted using LISREL 8.80.Additionally,a moderated mediation model was evaluated using the jAMM module in jamovi 2.6.13.Results:The study’s findings revealed significant negative correlations between resilience and the variables of PG,PSMU,and fatigue.Fatigue mediated the relationship between PG and resilience(B=−0.04,95%CI=[−0.05,−0.03]).PSMU moderated the direct relationship between PG and resilience with the interaction term PG×PSMU significant(B=−0.004,t=−6.501,p<0.001)and the first stage(PG→fatigue)of the mediation with PG×PSMU significant(B=0.055,t=8.351,p<0.001).The detrimental effects of PG on resilience were more pronounced among individuals with lower levels of PSMU.Conclusion:This study concluded that addressing PIU,particularly PG,is essential for fostering resilience in medical college students.While PSMU itself is maladaptive,the underlying social media engagement may serve a protective role through social support in mitigating the adverse effects of PG on resilience.
文摘The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.
基金2024 Annual Planning Program of China Vocational Education Association"Research and Practice on the Pathways of Innovative and Entrepreneurial Talent Cultivation Model under the Background of Industry-Education Integration"(ZJS2024YB79).
文摘For students in higher vocational colleges,the"Internet+"Innovation and Entrepreneurship Competition not only provides them with a rare platform for communication and learning but also significantly promotes their comprehensive development and substantially enhances their innovative and entrepreneurial capabilities.This paper explores the collaboration models between higher vocational colleges and industries in advancing the"Internet+"Innovation and Entrepreneurship Competition,analyzes the impact of the competition on the educational systems and curriculum design of higher vocational colleges,and proposes pathways for research and practice on innovative and entrepreneurial talent cultivation models,aiming to cultivate high-quality and high-skilled talents who can adapt to industrial transformation and upgrading and achieve high-quality development.
基金the National Natural Science Foundation of China(No.61662004).
文摘The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.
文摘Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.
基金This paper is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.004-0001-C01.
文摘The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.