Great strides have been made over the past decade to establish femtosecond lasers in advanced manufacturing systems for enabling new forms of non-contact processing of transparent materials.Research advances have show...Great strides have been made over the past decade to establish femtosecond lasers in advanced manufacturing systems for enabling new forms of non-contact processing of transparent materials.Research advances have shown that a myriad of additive and subtractive techniques is now possible for flexible 2D and 3D structuring of such materials with micro-and nano-scale precision.In this paper,these techniques have been refined and scaled up to demonstrate the potential for 3D writing of high-density optical packaging components,specifically addressing the major bottleneck for efficiently connecting optical fibres to silicon photonic(SiP)processors for use in telecom and data centres.An 84-channel fused silica interposer was introduced for high-density edge coupling of multicore fibres(MCFs)to a SiP chip.Femtosecond laser irradiation followed by chemical etching was further harnessed to open alignment sockets,permitting rapid assembly with precise locking of MCF positions for efficient coupling to laser written optical waveguides in the interposer.A 3D waveguide fanout design provided an attractive balancing of low losses,modematching,high channel density,compact footprint,and low crosstalk.The 3D additive and subtractive processes thus demonstrated the potential for higher scale integration and rapid photonic assembly and packaging of micro-optic components for telecom interconnects,with possible broader applications in integrated biophotonic chips or micro-displays.展开更多
The cerebellum is conceptualized as a processor of complex movements and is also endowed with roles in cognitive and emotional behaviors.Although the axons of deep cerebellar nuclei are known to project to primary tha...The cerebellum is conceptualized as a processor of complex movements and is also endowed with roles in cognitive and emotional behaviors.Although the axons of deep cerebellar nuclei are known to project to primary thalamic nuclei,macroscopic investigation of the characteristics of these projections,such as the spatial distribution of recipient zones,is lacking.Here,we studied the output of the cerebellar interposed nucleus(IpN)to the ventrolateral(VL)and centrolateral(CL)thalamic nuclei using electrophysiological recording in vivo and trans-synaptic viral tracing.We found that IpN stimulation induced mono-synaptic evoked potentials(EPs)in the VL but not the CL region.Furthermore,both the EPs induced by the IpN and the innervation of IpN projections displayed substantial heterogeneity across the VL region in three-dimensional space.These findings indicate that the recipient zones of IpN inputs vary between and within thalamic nuclei and may differentially control thalamo-cortical networks.展开更多
OBJECTIVE:To explore whether the paraventricular nucleus(PVN)participates in regulation of the antimyocardial ischemia-reperfusion injury(MIRI)effect of electroacupuncture(EA)and whether this is achieved through the P...OBJECTIVE:To explore whether the paraventricular nucleus(PVN)participates in regulation of the antimyocardial ischemia-reperfusion injury(MIRI)effect of electroacupuncture(EA)and whether this is achieved through the PVN-interposed nucleus(IN)neural pathway.METHODS:The modeling method of myocardial ischemia reperfusion injury was achieved by ligating the left anterior descending coronary artery in SpragueDawley rats.We used the Powerlab multi-channel physiological recorder system to record electrocardiograms and analyze the changes in ST segment displacement;2,3,5-Triphenyltetrazolium chloride staining was used to observe the percentage of myocardial infarction areas.Detecting cardiac troponin I(cTnI),lactate dehydrogenase(LDH)in serum was done with an enzyme-linked immunosorbent assay kit.Morphological changes in the myocardium were detected in each group with hematoxylin-eosin staining of paraffin sections.Detection of c-fos protein expression in the PVN of the hypothalamus was done with the immuneofluorescence method.The Plexon multi-channel acquisition system recorded PVN neuron discharges and local field potentials in each group of rats.Offline Sorter software was used for cluster analysis.Neuro Explorer software was used to perform autocorrelation,raster and frequency characteristics and spectral energy analysis of neuron signals in each group.RESULTS:Compared with the MIRI model group,the areas of myocardial infarction in the EA group were significantly reduced;the expression of cTnI,LDH in serum was decreased significantly.The firing frequency of pyramidal cells in the PVN was significantly increased and the spectrum energy map showed energy was reduced,c-fos expression in PVN was reduced,this indicated that neuronal activity in the PVN participates in the effect of EA improving myocardial injury.In addition,we used the kainic acid method to lesion the IN and observed that the effect of EA was weakened.For example,the area of myocardial infarction of lesion IN+EA group in rats was significantly increased compared with that resulting from EA group,the expression of cTnI,LDH in serum was significantly increased,the firing frequency of pyramidal cells in the PVN was significantly reduced.A spectral energy diagram shows that the energy after damage was higher than that of EA group.At the same time,the expression of c-fos in the PVN increased again.CONCLUSION:Our results indicated that the PVN-IN nerve pathway may participate as an effective pathway of EA to improve the effect of myocardial injury.展开更多
Interposers with through-silicon vias(TSVs)play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems.In the current practice of fabricating interposer...Interposers with through-silicon vias(TSVs)play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems.In the current practice of fabricating interposers,solder balls are placed next to the vias;however,this approach requires a large foot print for the input/output(I/O)connections.Therefore,in this study,we investigate the possibility of placing the solder balls directly on top of the vias,thereby enabling a smaller pitch between the solder balls and an increased density of the I/O connections.To reach this goal,inkjet printing(that is,piezo and super inkjet)was used to successfully fill and planarize hollow metal TSVs with a dielectric polymer.The under bump metallization(UBM)pads were also successfully printed with inkjet technology on top of the polymer-filled vias,using either Ag or Au inks.The reliability of the TSV interposers was investigated by a temperature cycling stress test(−40℃ to+125℃).The stress test showed no impact on DC resistance of the TSVs;however,shrinkage and delamination of the polymer was observed,along with some micro-cracks in the UBM pads.For proof of concept,SnAgCu-based solder balls were jetted on the UBM pads.展开更多
An interposer test vehicle with TSVs(through-silicon vias) and two redistribute layers(RDLs) on the top side for 2.5D integration was fabricated and high-frequency interconnections were designed in the form of cop...An interposer test vehicle with TSVs(through-silicon vias) and two redistribute layers(RDLs) on the top side for 2.5D integration was fabricated and high-frequency interconnections were designed in the form of coplanar waveguide(CPW) and micro strip line(MSL) structures. The signal transmission structures were modeled and simulated in a 3D EM tool to estimate the S-parameters. The measurements were carried out using the vector network analyzer(VNA). The simulated results of the transmission lines on the surface of the interposer without TSVs showed good agreement with the simulated results, while the transmission structures with TSVs showed significant offset between simulation and test results. The parameters of the transmission structures were changed,and the results were also presented and discussed in this paper.展开更多
A ball grid array (BGA) package based on Si interposer with through silicon via (TSV) was de- signed. Thermal behaviors of the designed BGA with Si interposer has been analyzed and compared to a conventional BGA w...A ball grid array (BGA) package based on Si interposer with through silicon via (TSV) was de- signed. Thermal behaviors of the designed BGA with Si interposer has been analyzed and compared to a conventional BGA with BT substrate in the approach of finite element modeling (FEM). The Si interposer with TSV was then fabricated and the designed BGA package was demonstrated. The designed BGA pack- age includes a 100 ~m thick Si interposer, which has redistribution copper traces on both sides. Through vias with 25 to 40 ~m diameter were fabricated on the Si interposer using deep reactive ion etching (DRIE), plasma enhanced chemical vapor deposition (PECVD), copper electroplating and chemical mechanical pol- ishing (CMP), etc. TSV in the designed interposer is used as electrical interconnections and cooling chan- nels. 5 mm by 5 mm and 10 mm by 10 mm thermal chips were assembled on the Si interposer.展开更多
AIM:To analyzed whether laparoscopy-assisted percutaneous endoscopic gastrostomy(PEG)could be a valuable option for patients with complicated anatomy.METHODS:A retrospective analysis of twelve patients(seven females,f...AIM:To analyzed whether laparoscopy-assisted percutaneous endoscopic gastrostomy(PEG)could be a valuable option for patients with complicated anatomy.METHODS:A retrospective analysis of twelve patients(seven females,five males;six children,six young adults;mean age 19.2 years)with cerebral palsy,spastic quadriparesis,severe kyphoscoliosis and interposed organs and who required enteral nutrition(EN)due to starvation was performed.For all patients,standard PEG placement was impossible due to distorted anatomy.All the patients qualified for the laparoscopyassisted PEG procedure.RESULTS:In all twelve patients,the laparoscopy-assisted PEG was successful,and EN was introduced four to six hours after the PEG placement.There were no complications in the perioperative period,either technical or metabolic.All the patients were discharged from the hospital and were then effectively fed using bolus methods.CONCLUSION:Laparoscopy-assisted PEG should become the method of choice for gastrostomy tube placement and subsequent EN if PEG placement cannot be performed safely.展开更多
System-in-packaging(Si P) can realize the integration and miniaturization of electronic devices and it is significant to continue Moore’s law.Through-X-via(TXV) technology is the cornerstone of 3 D-SiP,which enables ...System-in-packaging(Si P) can realize the integration and miniaturization of electronic devices and it is significant to continue Moore’s law.Through-X-via(TXV) technology is the cornerstone of 3 D-SiP,which enables the vertical stacking and electrical interconnection of electronic devices.TXV originated from through-hole(TH) in PCB substrates and evolved in different substrate materials,such as silicon,glass,ceramic,and polymer.This work provides a comprehensive review of four distinguishing TXV technologies(through silicon via(TSV),through glass via(TGV),through ceramic via(TCV),and through mold via(TMV)),including the fabrication mechanisms,processes,and applications.Every TXV technology has unique characteristics and owns particular processes and functions.The process methods,key technologies,application fields,and advantages and disadvantages of each TXV technology were discussed.The cutting-edge through-hole process and development direction were reviewed.展开更多
Due to its low electrical loss and low process cost, a glass interposer has been developed to provide a compelling alternative to the silicon-based interposer for packaging of future 2-D and 3-D ICs. In this study,thr...Due to its low electrical loss and low process cost, a glass interposer has been developed to provide a compelling alternative to the silicon-based interposer for packaging of future 2-D and 3-D ICs. In this study,through glass vias(TGVs) are used to implement 3-D inductors for minimal footprint and large quality factor. Using the inductors and parallel plate capacitors, a compact 3-D Wilkinson power divider is designed and analyzed.Compared with some reported power dividers, the proposed TGV-based circuit has an ultra-compact size and excellent electrical performance.展开更多
基金Financial support from Huawei Technologies Co.,Ltd,China(Project YB2016020025)is gratefully acknowledged.
文摘Great strides have been made over the past decade to establish femtosecond lasers in advanced manufacturing systems for enabling new forms of non-contact processing of transparent materials.Research advances have shown that a myriad of additive and subtractive techniques is now possible for flexible 2D and 3D structuring of such materials with micro-and nano-scale precision.In this paper,these techniques have been refined and scaled up to demonstrate the potential for 3D writing of high-density optical packaging components,specifically addressing the major bottleneck for efficiently connecting optical fibres to silicon photonic(SiP)processors for use in telecom and data centres.An 84-channel fused silica interposer was introduced for high-density edge coupling of multicore fibres(MCFs)to a SiP chip.Femtosecond laser irradiation followed by chemical etching was further harnessed to open alignment sockets,permitting rapid assembly with precise locking of MCF positions for efficient coupling to laser written optical waveguides in the interposer.A 3D waveguide fanout design provided an attractive balancing of low losses,modematching,high channel density,compact footprint,and low crosstalk.The 3D additive and subtractive processes thus demonstrated the potential for higher scale integration and rapid photonic assembly and packaging of micro-optic components for telecom interconnects,with possible broader applications in integrated biophotonic chips or micro-displays.
基金This work was supported by grants from the National Natural Science Foundation of China(81625006,31970923,and 31820103005)the China Postdoctoral Science Foundation(2019M662025).
文摘The cerebellum is conceptualized as a processor of complex movements and is also endowed with roles in cognitive and emotional behaviors.Although the axons of deep cerebellar nuclei are known to project to primary thalamic nuclei,macroscopic investigation of the characteristics of these projections,such as the spatial distribution of recipient zones,is lacking.Here,we studied the output of the cerebellar interposed nucleus(IpN)to the ventrolateral(VL)and centrolateral(CL)thalamic nuclei using electrophysiological recording in vivo and trans-synaptic viral tracing.We found that IpN stimulation induced mono-synaptic evoked potentials(EPs)in the VL but not the CL region.Furthermore,both the EPs induced by the IpN and the innervation of IpN projections displayed substantial heterogeneity across the VL region in three-dimensional space.These findings indicate that the recipient zones of IpN inputs vary between and within thalamic nuclei and may differentially control thalamo-cortical networks.
基金Supported by National Natural Science Foundation of China:Mechanism of GABA/Glu Neural Circuit in Lateral HypothalamusParietal Nucleus in Alleviating Myocardial Ischemia-Reperfusion Injury by Acupuncture Preconditioning(82074536)Study on the Protective Effect of Acupuncture Pretreatment on Myocardial Ischemia-Reperfusion Injury Based on Hypothalamic-Cerebellar Neural Circuit(81774414)+2 种基金Mechanism of GABA Neural Circuit in the Paraventricular Nucleus of Hypothalamus and Ventrolateral Region of Medulla Oblongata in Alleviating Myocardial Ischemia-Reperfusion Injury Induced by Acupuncture Pretreatment(82104999)Natural Science Foundation of Anhui Province the Central Regulatory Mechanism of Acupuncture Regulating Cardiac Function(2108085Y30)Anhui Province University Outstanding Top Talent Cultivation Funding Project(gxgwfx2019025)
文摘OBJECTIVE:To explore whether the paraventricular nucleus(PVN)participates in regulation of the antimyocardial ischemia-reperfusion injury(MIRI)effect of electroacupuncture(EA)and whether this is achieved through the PVN-interposed nucleus(IN)neural pathway.METHODS:The modeling method of myocardial ischemia reperfusion injury was achieved by ligating the left anterior descending coronary artery in SpragueDawley rats.We used the Powerlab multi-channel physiological recorder system to record electrocardiograms and analyze the changes in ST segment displacement;2,3,5-Triphenyltetrazolium chloride staining was used to observe the percentage of myocardial infarction areas.Detecting cardiac troponin I(cTnI),lactate dehydrogenase(LDH)in serum was done with an enzyme-linked immunosorbent assay kit.Morphological changes in the myocardium were detected in each group with hematoxylin-eosin staining of paraffin sections.Detection of c-fos protein expression in the PVN of the hypothalamus was done with the immuneofluorescence method.The Plexon multi-channel acquisition system recorded PVN neuron discharges and local field potentials in each group of rats.Offline Sorter software was used for cluster analysis.Neuro Explorer software was used to perform autocorrelation,raster and frequency characteristics and spectral energy analysis of neuron signals in each group.RESULTS:Compared with the MIRI model group,the areas of myocardial infarction in the EA group were significantly reduced;the expression of cTnI,LDH in serum was decreased significantly.The firing frequency of pyramidal cells in the PVN was significantly increased and the spectrum energy map showed energy was reduced,c-fos expression in PVN was reduced,this indicated that neuronal activity in the PVN participates in the effect of EA improving myocardial injury.In addition,we used the kainic acid method to lesion the IN and observed that the effect of EA was weakened.For example,the area of myocardial infarction of lesion IN+EA group in rats was significantly increased compared with that resulting from EA group,the expression of cTnI,LDH in serum was significantly increased,the firing frequency of pyramidal cells in the PVN was significantly reduced.A spectral energy diagram shows that the energy after damage was higher than that of EA group.At the same time,the expression of c-fos in the PVN increased again.CONCLUSION:Our results indicated that the PVN-IN nerve pathway may participate as an effective pathway of EA to improve the effect of myocardial injury.
基金This work is supported by ENIAC-JU Project Prominent Grant No 324189 and Tekes Grant No.40336/12 and Vinnova Grants Nos.2012-04301,2012-04287,and 2012-04314MM is supported by the Academy of Finland Grant Nos.288945 and 294119The work of Silex and KTH was funded in part through an Industrial Ph.D.grant from the Swedish Foundation for Strategic Research(SSF),Grant No.ID14-0033.
文摘Interposers with through-silicon vias(TSVs)play a key role in the three-dimensional integration and packaging of integrated circuits and microelectromechanical systems.In the current practice of fabricating interposers,solder balls are placed next to the vias;however,this approach requires a large foot print for the input/output(I/O)connections.Therefore,in this study,we investigate the possibility of placing the solder balls directly on top of the vias,thereby enabling a smaller pitch between the solder balls and an increased density of the I/O connections.To reach this goal,inkjet printing(that is,piezo and super inkjet)was used to successfully fill and planarize hollow metal TSVs with a dielectric polymer.The under bump metallization(UBM)pads were also successfully printed with inkjet technology on top of the polymer-filled vias,using either Ag or Au inks.The reliability of the TSV interposers was investigated by a temperature cycling stress test(−40℃ to+125℃).The stress test showed no impact on DC resistance of the TSVs;however,shrinkage and delamination of the polymer was observed,along with some micro-cracks in the UBM pads.For proof of concept,SnAgCu-based solder balls were jetted on the UBM pads.
基金Project supported by the National S&T Major Projects(No.2011ZX02709)the National Natural Science Foundation of China(No.61176098)support from the 100 Talents Program of The Chinese Academy of Sciences
文摘An interposer test vehicle with TSVs(through-silicon vias) and two redistribute layers(RDLs) on the top side for 2.5D integration was fabricated and high-frequency interconnections were designed in the form of coplanar waveguide(CPW) and micro strip line(MSL) structures. The signal transmission structures were modeled and simulated in a 3D EM tool to estimate the S-parameters. The measurements were carried out using the vector network analyzer(VNA). The simulated results of the transmission lines on the surface of the interposer without TSVs showed good agreement with the simulated results, while the transmission structures with TSVs showed significant offset between simulation and test results. The parameters of the transmission structures were changed,and the results were also presented and discussed in this paper.
基金Supported by the National S&T Major Project (No. 2009ZX02038)the National High-Tech Research and Development (863) Program of China (No. 2009AA04321)supported by Cisco Systems Inc
文摘A ball grid array (BGA) package based on Si interposer with through silicon via (TSV) was de- signed. Thermal behaviors of the designed BGA with Si interposer has been analyzed and compared to a conventional BGA with BT substrate in the approach of finite element modeling (FEM). The Si interposer with TSV was then fabricated and the designed BGA package was demonstrated. The designed BGA pack- age includes a 100 ~m thick Si interposer, which has redistribution copper traces on both sides. Through vias with 25 to 40 ~m diameter were fabricated on the Si interposer using deep reactive ion etching (DRIE), plasma enhanced chemical vapor deposition (PECVD), copper electroplating and chemical mechanical pol- ishing (CMP), etc. TSV in the designed interposer is used as electrical interconnections and cooling chan- nels. 5 mm by 5 mm and 10 mm by 10 mm thermal chips were assembled on the Si interposer.
文摘AIM:To analyzed whether laparoscopy-assisted percutaneous endoscopic gastrostomy(PEG)could be a valuable option for patients with complicated anatomy.METHODS:A retrospective analysis of twelve patients(seven females,five males;six children,six young adults;mean age 19.2 years)with cerebral palsy,spastic quadriparesis,severe kyphoscoliosis and interposed organs and who required enteral nutrition(EN)due to starvation was performed.For all patients,standard PEG placement was impossible due to distorted anatomy.All the patients qualified for the laparoscopyassisted PEG procedure.RESULTS:In all twelve patients,the laparoscopy-assisted PEG was successful,and EN was introduced four to six hours after the PEG placement.There were no complications in the perioperative period,either technical or metabolic.All the patients were discharged from the hospital and were then effectively fed using bolus methods.CONCLUSION:Laparoscopy-assisted PEG should become the method of choice for gastrostomy tube placement and subsequent EN if PEG placement cannot be performed safely.
基金supported by the Aerospace S&T Group Application Innovation Program Project(No:09428ADA)the Key Research and Development Project of Hubei Province(Grant Nos.2020BAB068 and 2021BAA071)。
文摘System-in-packaging(Si P) can realize the integration and miniaturization of electronic devices and it is significant to continue Moore’s law.Through-X-via(TXV) technology is the cornerstone of 3 D-SiP,which enables the vertical stacking and electrical interconnection of electronic devices.TXV originated from through-hole(TH) in PCB substrates and evolved in different substrate materials,such as silicon,glass,ceramic,and polymer.This work provides a comprehensive review of four distinguishing TXV technologies(through silicon via(TSV),through glass via(TGV),through ceramic via(TCV),and through mold via(TMV)),including the fabrication mechanisms,processes,and applications.Every TXV technology has unique characteristics and owns particular processes and functions.The process methods,key technologies,application fields,and advantages and disadvantages of each TXV technology were discussed.The cutting-edge through-hole process and development direction were reviewed.
基金Projected supported by the National Natural Science Foundation of China(Nos.61771268,61571248,U1709218)the Science and Technology Fund of Zhejiang Province(No.2015C31090)+1 种基金the Natural Science Foundation of Zhejiang(No.LY17F040002)the K.C.Wong Magna Fund in Ningbo University
文摘Due to its low electrical loss and low process cost, a glass interposer has been developed to provide a compelling alternative to the silicon-based interposer for packaging of future 2-D and 3-D ICs. In this study,through glass vias(TGVs) are used to implement 3-D inductors for minimal footprint and large quality factor. Using the inductors and parallel plate capacitors, a compact 3-D Wilkinson power divider is designed and analyzed.Compared with some reported power dividers, the proposed TGV-based circuit has an ultra-compact size and excellent electrical performance.