[Objective] The aim was to study the relationship between spring precipitation anomaly in Northwest China and sea surface temperature anomaly (SSTA) in Key region in recent 50 years. [Method] Based on monthly average ...[Objective] The aim was to study the relationship between spring precipitation anomaly in Northwest China and sea surface temperature anomaly (SSTA) in Key region in recent 50 years. [Method] Based on monthly average precipitation in Northwest China and global monthly sea surface temperature (SST) grid data, the effects of SSTA in equatorial central and eastern Pacific on spring precipitation in Northwest China were discussed by means of correlation and SVD analysis. [Result] For spring precipitation in Northwest China, the key period of SST was from August to September in the former year, and the equatorial central and eastern Pacific (125°-85° W, 5° S-10° N) was named 'Key region'. Correlation analysis showed that there was obviously positive correlation between spring precipitation in Northwest China and SST (monthly average from August to September in the former year) in equatorial central and eastern Pacific, especially Key region. SVD analysis revealed that spring precipitation anomaly in Northwest China distributed in phase, while SST in equatorial central and eastern Pacific from August to September in the former year had higher positive correlation coefficient, and there was obviously positive couple correlation in Key region. [Conclusion] The study could provide theoretic foundation for the prediction of drought and flood in Northwest China.展开更多
Variance analysis, correlation analysis and regression analysis methods are applied to analyze the variation of circulation at 500 hPa. In winter, there are three regions (180°E – 150°W, 45°N – 60...Variance analysis, correlation analysis and regression analysis methods are applied to analyze the variation of circulation at 500 hPa. In winter, there are three regions (180°E – 150°W, 45°N – 60°N, 70°W – 100 °W,45°N – 75°N, 60°E – 100°E, 65°N – 80°N) whose variations are strong. Those regions are the key regions in which atmospheric circulation can change. Those regions are correlated to some teleconnections and can present a part of variations of 500 hPa to some degree. The linear contemporary correlation between those regions and the height at 500 hPa is significant. Those regions can account for 88 % of variations of concurrent height at 500 hPa. Those regions can present and forecast some variations to some degree in March and April. The longer the time interval, the worse the forecast effect will be. The interannual variations of Q1, Q2 and the SST are weak in the western Pacific.展开更多
Land-atmosphere interaction,as one of the key processes affecting the atmosphere and climate over East Asia,has drawn increasing attention during the past few decades.However,the current level of understanding regardi...Land-atmosphere interaction,as one of the key processes affecting the atmosphere and climate over East Asia,has drawn increasing attention during the past few decades.However,the current level of understanding regarding the mechanisms through which land surface processes impact the East Asian climate needs to be improved.Based on existing studies,six key regions where land surface processes affect the East Asian climate are proposed in this study,which can provide a valuable reference for future research into land-atmosphere interaction in East Asia.展开更多
The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents...The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents will provide theoretical reference for molecular breeding by a design approach.‘Kenong 9204’(KN9204)is a candidate foundation parent characterized by ideotype,high yield potential,and particularly high nitrogen fertilizer utilization.To better understand the genetic basis of its high yield potential,high throughput whole-genome re-sequencing(10×)was performed on KN9204,its parental lines and its derivatives.A high-resolution genetic composition map of KN9204 was constructed,which showed the parental origin of the favorable genomic segments based on the identification of excellent yield-related quantitative trait loci(QTL)from a bi-parental mapping population.Xiaoyan 693(XY693),a wheat–Thinopyrum ponticum partial amphidiploid,contributed a great deal to the high yield potential of KN9204,and three major stable QTLs from XY693 were fine mapped.The transmissibility of key genomic segments from KN9204 to its derivatives were delineated,indicating that haplotype blocks containing beneficial gene combinations were conserved along with directional selection by breeders.Evidence for selection sweeps in the breeding programs was identified.This study provides a theoretical reference for the breeding of high-yield wheat varieties by a molecular design approach.展开更多
文摘[Objective] The aim was to study the relationship between spring precipitation anomaly in Northwest China and sea surface temperature anomaly (SSTA) in Key region in recent 50 years. [Method] Based on monthly average precipitation in Northwest China and global monthly sea surface temperature (SST) grid data, the effects of SSTA in equatorial central and eastern Pacific on spring precipitation in Northwest China were discussed by means of correlation and SVD analysis. [Result] For spring precipitation in Northwest China, the key period of SST was from August to September in the former year, and the equatorial central and eastern Pacific (125°-85° W, 5° S-10° N) was named 'Key region'. Correlation analysis showed that there was obviously positive correlation between spring precipitation in Northwest China and SST (monthly average from August to September in the former year) in equatorial central and eastern Pacific, especially Key region. SVD analysis revealed that spring precipitation anomaly in Northwest China distributed in phase, while SST in equatorial central and eastern Pacific from August to September in the former year had higher positive correlation coefficient, and there was obviously positive couple correlation in Key region. [Conclusion] The study could provide theoretic foundation for the prediction of drought and flood in Northwest China.
基金Key foundation project of Yunnan province (2003D00142) Natural Science Foundation of China (40065001)
文摘Variance analysis, correlation analysis and regression analysis methods are applied to analyze the variation of circulation at 500 hPa. In winter, there are three regions (180°E – 150°W, 45°N – 60°N, 70°W – 100 °W,45°N – 75°N, 60°E – 100°E, 65°N – 80°N) whose variations are strong. Those regions are the key regions in which atmospheric circulation can change. Those regions are correlated to some teleconnections and can present a part of variations of 500 hPa to some degree. The linear contemporary correlation between those regions and the height at 500 hPa is significant. Those regions can account for 88 % of variations of concurrent height at 500 hPa. Those regions can present and forecast some variations to some degree in March and April. The longer the time interval, the worse the forecast effect will be. The interannual variations of Q1, Q2 and the SST are weak in the western Pacific.
基金supported by the National Natural Science Foundation of China[grant numbers 42088101 and 42130609].
文摘Land-atmosphere interaction,as one of the key processes affecting the atmosphere and climate over East Asia,has drawn increasing attention during the past few decades.However,the current level of understanding regarding the mechanisms through which land surface processes impact the East Asian climate needs to be improved.Based on existing studies,six key regions where land surface processes affect the East Asian climate are proposed in this study,which can provide a valuable reference for future research into land-atmosphere interaction in East Asia.
基金supported by the grants from the Shandong Major Basic Research Project of Natural Science Foundation,China(ZR2019ZD16)the Shandong Provincial Key Research and Development Program,China(2019GNC106126 and 2021LZGC009)+3 种基金the Natural Science Foundation of Hebei Province,China(C2021205013)the Hebei Scientific and Technological Innovation Team of Modern Wheat Seed Industry,China(21326318D)the National Natural Science Foundation of China(31871612,31901535,and 32101726)the China Agriculture Research System of MOF and MARA(CARS-03).
文摘The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents will provide theoretical reference for molecular breeding by a design approach.‘Kenong 9204’(KN9204)is a candidate foundation parent characterized by ideotype,high yield potential,and particularly high nitrogen fertilizer utilization.To better understand the genetic basis of its high yield potential,high throughput whole-genome re-sequencing(10×)was performed on KN9204,its parental lines and its derivatives.A high-resolution genetic composition map of KN9204 was constructed,which showed the parental origin of the favorable genomic segments based on the identification of excellent yield-related quantitative trait loci(QTL)from a bi-parental mapping population.Xiaoyan 693(XY693),a wheat–Thinopyrum ponticum partial amphidiploid,contributed a great deal to the high yield potential of KN9204,and three major stable QTLs from XY693 were fine mapped.The transmissibility of key genomic segments from KN9204 to its derivatives were delineated,indicating that haplotype blocks containing beneficial gene combinations were conserved along with directional selection by breeders.Evidence for selection sweeps in the breeding programs was identified.This study provides a theoretical reference for the breeding of high-yield wheat varieties by a molecular design approach.