期刊文献+
共找到53,438篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative Study of Probabilistic and Least-Squares Methods for Developing Predictive Models
1
作者 Boribo Kikunda Philippe Thierry Nsabimana +2 位作者 Jules Raymond Kala Jeremie Ndikumagenge Longin Ndayisaba 《Open Journal of Applied Sciences》 2024年第7期1775-1787,共13页
This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations... This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives. 展开更多
关键词 Predictive Models least squares Bayesian Estimation Methods
下载PDF
Algorithms and statistical analysis for linear structured weighted total least squares problem
2
作者 Jian Xie Tianwei Qiu +2 位作者 Cui Zhou Dongfang Lin Sichun Long 《Geodesy and Geodynamics》 EI CSCD 2024年第2期177-188,共12页
Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand... Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations. 展开更多
关键词 Linear structured weighted total least squares ERRORS-IN-VARIABLES Errors-in-observations Functional modelmodification Stochastic model modification Accuracyevaluation
原文传递
Least Squares One-Class Support Tensor Machine
3
作者 Kaiwen Zhao Yali Fan 《Journal of Computer and Communications》 2024年第4期186-200,共15页
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ... One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods. 展开更多
关键词 least Square One-Class Support Tensor Machine One-Class Classification Upscale least Square One-Class Support Vector Machine One-Class Support Tensor Machine
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
4
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
BOOSTING SPARSE LEAST SQUARES SUPPORT VECTOR REGRESSION (BSLSSVR) AND ITS APPLICATION TO THRUST ESTIMATION 被引量:2
5
作者 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期254-261,共8页
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ... In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰. 展开更多
关键词 least squares support vector machines direct thrust control boosting technique
下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:1
6
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
原文传递
基于PLSR和LSSVM模型的土壤水分高光谱反演
7
作者 刘英 范凯旋 +2 位作者 裴为豪 沈文静 葛建华 《矿业安全与环保》 CAS 北大核心 2024年第5期147-153,共7页
为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PL... 为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PLSR)和最小二乘支持向量机(LSSVM)构建土壤水分预测模型并验证其预测精度。结果表明,基于一阶变换的PLSR模型和LSSVM模型预测精度相对较好,一阶变换的PLSR模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.7021和0.6405,均方根误差RMSE_(c)和RMSE_(p)分别为1.6384%和1.1034%,相对分析误差RPD_(p)为1.7263;一阶变换的LSSVM模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.8125和0.5979,均方根误差RMSE_(c)和RMSE_(p)分别为1.2755%和1.3459%,相对分析误差RPD_(P)为1.6323。最终基于PLSR和LSSVM模型完成了土壤水分的制图,实现了土壤水分的空间预测,为该研究区植被引导修复中土壤水分精准提升提供了空间数据支持。 展开更多
关键词 土壤含水量 高光谱 偏最小二乘回归 最小二乘支持向量机 无人机 干旱阈值 引导修复
下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
8
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
下载PDF
基于OPLS-DA模型分析不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质
9
作者 葛庆联 刘茵茵 +5 位作者 樊艳凤 马丽娜 贾晓旭 高玉时 周瑶敏 唐修君 《扬州大学学报(农业与生命科学版)》 CAS 北大核心 2024年第4期49-56,共8页
为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squar... 为研究不同养殖方式下宁都黄鸡肌肉关键挥发性风味物质,将试验鸡随机分为笼养组和平养组,饲喂同一日粮。试验鸡达上市日龄时对鸡肉进行感官品尝评价和挥发性风味物质检测,并采用正交偏最小二乘-判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)方法筛选与不同养殖方式相关的差异性风味物质。结果表明:平养组和笼养组共有的挥发性风味物质27种,主要为酚类、醇类和烃类。挥发性风味物质中,己醛、1-辛烯-3-醇、E-2-壬烯醛、正己醇、壬醛、2,3-戊二酮、癸醛、2,3-辛二酮、E-2-辛烯醛为具有显著性差异的挥发性风味物质。综上,这一研究可为地方鸡肉品质基于风味物质的评价提供科学依据。 展开更多
关键词 宁都黄鸡 养殖方式 挥发性物质 正交偏最小二乘-判别分析
下载PDF
基于TLS的改进子空间投影算法
10
作者 李飞 张天良 梁满 《通信技术》 2024年第3期229-235,共7页
针对经典MUSIC算法在信源相干、低信噪比、小快拍数等非理想环境下性能失效的问题,提出了一种改进的基于TLS的加权子空间投影算法。首先对阵列接收的数据协方差矩阵进行重构处理,以达到解相干目的;其次充分利用子空间信息,基于总体最小... 针对经典MUSIC算法在信源相干、低信噪比、小快拍数等非理想环境下性能失效的问题,提出了一种改进的基于TLS的加权子空间投影算法。首先对阵列接收的数据协方差矩阵进行重构处理,以达到解相干目的;其次充分利用子空间信息,基于总体最小二乘拟合方法对特征值进行拟合修正,基于修正MUSIC算法思想,利用校正后的噪声特征值和信号特征值分别对噪声子空间和信号子空间进行加权处理,得到改进后的噪声子空间和信号子空间,并将两者结合得到新的空间谱函数;最后进行谱峰搜索,完成信号源的波达方向估计。仿真结果表明,改进后的算法既适用于相干信号环境,在低信噪比、小快拍数及信号入射角度间隔较小的情况下,又能有效估计出信源的波达方向。 展开更多
关键词 阵列信号处理 DOA估计 MUSIC算法 总体最小二乘算法
下载PDF
基于DBN和BES-LSSVM的矿用压风机异常状态识别方法
11
作者 李敬兆 王克定 +2 位作者 王国锋 郑鑫 石晴 《流体机械》 CSCD 北大核心 2024年第3期89-97,共9页
针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督... 针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督学习方式充分挖掘监测数据中异常特征并快速提取;然后,利用秃鹰搜索算法(BES)优化LSSVM的超参数,构建最优的BES-LSSVM分类模型;最后,将DBN提取的异常特征作为BES-LSSVM模型的输入,对矿用压风机异常状态进行识别。试验验证与对比分析结果表明,相较于GA,PSO,GWO算法,BES算法的求解精度和收敛速度均有所提高,同时DBN-BES-LSSVM模型在测试集上平均识别精度达到94.65%,较PCA-LSSVM模型、DBN模型和DBN-LSSVM模型的识别精度分别提高了10.53%,5.84%和3.76%,验证了DBN-BES-LSSVM模型在矿用压风机异常特征提取以及特征识别方面的优越性。 展开更多
关键词 矿用压风机 深度置信网络 秃鹰搜索算法 最小二乘支持向量机 异常识别
下载PDF
硫酮衍生物LS对天然胶乳保存效果的研究
12
作者 赵立广 丁丽 +7 位作者 赵立阳 宋亚忠 李建伟 王岳坤 吴凡 邓大雨 李云 桂红星 《热带作物学报》 CSCD 北大核心 2024年第1期144-153,共10页
天然胶乳很容易腐败变质,而当前的高氨保存体系存在严重的污染问题。本研究采用硫酮衍生物LS保存天然胶乳,研究保存剂LS对天然胶乳的保存效果。结果表明:LS保存的鲜胶乳挥发脂肪酸值(VFA No.)和黏度值均比较低,当LS用量为0.1%时,对鲜胶... 天然胶乳很容易腐败变质,而当前的高氨保存体系存在严重的污染问题。本研究采用硫酮衍生物LS保存天然胶乳,研究保存剂LS对天然胶乳的保存效果。结果表明:LS保存的鲜胶乳挥发脂肪酸值(VFA No.)和黏度值均比较低,当LS用量为0.1%时,对鲜胶乳的保存效果优于0.25%氨;采用LS-氨复合保存制备低氨浓缩胶乳,当LS用量为0.01%~0.05%时可稳定保存浓缩胶乳达180d之久;所保存的低氨浓缩胶乳挥发脂肪酸值(VFANo.)较低,稳定性良好,各项指标均满足当前生产应用需求。此外,LS-氨复合保存低氨浓缩胶乳具有优异的理化性能和成膜性能,硫化胶膜的拉伸强度和撕裂强度普遍优于当前高氨保存浓缩胶乳。通过红外吸收光谱分析,LS-氨复合保存的低氨浓缩胶乳硫化胶膜的结构无明显变化;热分析结果表明,硫化胶膜热稳定性与高氨浓缩胶乳胶膜基本一致。此外,安全性分析结果表明,LS-氨复合保存低氨浓缩胶乳干胶膜不具有潜在毒性影响;同时无皮肤刺激性反应,安全性良好。硫酮衍生物LS对天然胶乳具有优异的保存效果,复合保存制备低氨浓缩胶乳性能良好,可用于多种纯胶制品的生产,同时使用成本低廉,具有广阔的应用前景。 展开更多
关键词 硫酮衍生物ls 天然胶乳 保存剂 理化性能 安全性
下载PDF
基于WRLS-ARMAX系统辨识的新能源电力系统惯量评估
13
作者 刘志坚 洪朝飞 +1 位作者 郭成 张馨媛 《电机与控制应用》 2024年第7期84-93,共10页
随着高比例新能源机组并入电网,电力系统低惯量特性愈加显著,严重影响了系统运行稳定性。为了准确估计新能源电网实际运行状态下的惯量大小,提出了一种基于加权递推最小二乘(WRLS)-受控自回归滑动平均(ARMAX)系统辨识的新能源电力系统... 随着高比例新能源机组并入电网,电力系统低惯量特性愈加显著,严重影响了系统运行稳定性。为了准确估计新能源电网实际运行状态下的惯量大小,提出了一种基于加权递推最小二乘(WRLS)-受控自回归滑动平均(ARMAX)系统辨识的新能源电力系统等效惯量评估方法。首先,以发电机为对象,建立不同扰动情况下发电机功频响应特性的通用惯量解析模型;其次,以发电机并网母线有功功率和频率扰动作为输入和输出,建立ARMAX模型,考虑到实际电网运行过程中受大、小扰动共同影响,实际测量数据具有异方差性,采用WRLS求解模型中的待辨识参数;然后,提取辨识模型中包含惯量响应的传递函数模型,利用阶跃响应计算惯量源的惯性时间常数,进而计算得到系统等效惯量大小;最后,通过Matlab/Simulink仿真算例验证了所提方法的准确性和实用性。 展开更多
关键词 加权递推最小二乘 系统辨识 新能源电力系统 惯量评估 功频响应
下载PDF
Robust least squares projection twin SVM and its sparse solution 被引量:1
14
作者 ZHOU Shuisheng ZHANG Wenmeng +1 位作者 CHEN Li XU Mingliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期827-838,共12页
Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsi... Least squares projection twin support vector machine(LSPTSVM)has faster computing speed than classical least squares support vector machine(LSSVM).However,LSPTSVM is sensitive to outliers and its solution lacks sparsity.Therefore,it is difficult for LSPTSVM to process large-scale datasets with outliers.In this paper,we propose a robust LSPTSVM model(called R-LSPTSVM)by applying truncated least squares loss function.The robustness of R-LSPTSVM is proved from a weighted perspective.Furthermore,we obtain the sparse solution of R-LSPTSVM by using the pivoting Cholesky factorization method in primal space.Finally,the sparse R-LSPTSVM algorithm(SR-LSPTSVM)is proposed.Experimental results show that SR-LSPTSVM is insensitive to outliers and can deal with large-scale datasets fastly. 展开更多
关键词 OUTLIERS robust least squares projection twin support vector machine(R-lsPTSVM) low-rank approximation sparse solution
下载PDF
基于VMD-LILGWO-LSSVM短期风电功率预测
15
作者 王瑞 李虹锐 +1 位作者 逯静 卜旭辉 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第2期128-136,共9页
目的为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法。首先通过VMD方法将风电功率序列分解重构成3... 目的为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法。首先通过VMD方法将风电功率序列分解重构成3个复杂程度性不同的模态分量,降低风电功率的波动性;其次使用LSSVM挖掘各分量的特征信息,对各分量分别进行预测,针对LSSVM模型中重要参数的选取对预测精度影响较大问题,引入LILGWO对参数进行寻优;最后将各分量预测结果叠加重构,得到最终预测风电功率。结果以宁夏回族自治区某地区风电站实际数据为例,对未来三天分别进行预测取平均值,本文方法的预测平均绝对误差(mean absolute error,MAE)为2.7068 kW,均方根误差(root mean square error,RMSE)为2.0211,拟合程度决定系数(R-Square,R^(2))为0.9769,与对比方法3~6相比,RMSE分别降低了40.93%,25.21%,14.7%,6.24%;MAE分别降低了42.34%,28.04%,16.97%,7.77%;R^(2)分别提升了4.21%,1.78%,0.82%,0.28%。预测时长方面,BP和LSSVM平均训练时间分别是10,138 s,虽然LSSVM预测时间较长但效果最好,采用PSO、GWO、LILGWO对LSSVM进行寻优后训练时间分别平均缩短了39,44,58 s。结论仿真验证了所提方法在短期风电功率预测方面的有效性。 展开更多
关键词 风电功率 短期预测 变分模态分解 近似熵 改进灰狼算法 最小二乘支持向量机
下载PDF
基于PSO-LSSVM-BP模型的高边坡力学参数反分析及稳定性评价
16
作者 徐卫亚 陈世壮 +5 位作者 张贵科 胡明涛 黄威 许晓逸 张海龙 王如宾 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期52-59,共8页
基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数... 基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数据作为输入信息,通过反分析获得高边坡岩体力学参数,将反分析参数用于FLAC3D位移数值计算,结果表明模拟结果与监测数据吻合较好,验证了该模型的可行性和有效性。基于PSO-LSSVM-BP模型,对不同蓄水位下两河口水电站进水口高边坡稳定性进行了评价,发现水位是影响边坡稳定性的主要因素,随着水位上升,边坡位移逐渐增大,其表面和断层处损伤程度加深,边坡局部点安全系数有所下降,但整体点安全系数均大于1.30,有一定安全裕度。 展开更多
关键词 高边坡 力学参数反分析 粒子群优化 最小二乘向量机 反向传播神经网络 两河口水电站
下载PDF
基于分数阶LS模型的多场耦合波的反射和透射
17
作者 边鑫禹 王红 +3 位作者 岳田田 韩旸 魏蕴波 李月秋 《高师理科学刊》 2024年第5期50-55,共6页
应用麦克斯韦电磁学理论引入洛伦兹力,反映外磁场对弹性波传播的影响,运用分数阶广义热弹性LS模型,反映热力耦合效应对弹性波传播的影响.通过色散方程,分析了外磁场和热力耦合效应对波动模式和色散特性的影响.应用连续性边界条件计算出... 应用麦克斯韦电磁学理论引入洛伦兹力,反映外磁场对弹性波传播的影响,运用分数阶广义热弹性LS模型,反映热力耦合效应对弹性波传播的影响.通过色散方程,分析了外磁场和热力耦合效应对波动模式和色散特性的影响.应用连续性边界条件计算出各种反射波和透射波与入射波的能流比,并通过法向能量守恒验证了数值计算结果的可靠性. 展开更多
关键词 分数阶 热弹性 ls模型 洛伦兹力 反射 透射
下载PDF
Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares 被引量:5
18
作者 Lei Yu Yuliang Liang +1 位作者 Yizhuo Zhang Jun Cao 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第3期1053-1060,共8页
This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to... This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to establish a partial least square(PLS)model based on correlation local embedding(CLE).Mongolian oak(Quercus mongolica Fisch.ex Ledeb.)was used to test the eff ectiveness of the model.The cross-validation method was used to verify the robustness of the CLE–PLS model.Ninety samples were tested as the calibration set and forty-fi ve as the validation set.The results show that the prediction coeffi cient of determination(R2 p)is 0.80 for MOR,and 0.78 for MOE.The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE. 展开更多
关键词 MODULUS of RUPTURE MODULUS of ELASTICITY Near-infrared CORRELATION LOCAL EMBEDDING Partial least square
下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
19
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 Linear Model Mean Squared Prediction Error Final Prediction Error Generalized Cross Validation least squares Ridge Regression
下载PDF
基于近红外光谱技术结合ARO-LSSVR的天麻中有效成分含量快速检测 被引量:1
20
作者 李珊珊 张付杰 +5 位作者 李丽霞 张浩 段星桅 史磊 崔秀明 李小青 《食品科学》 EI CAS CSCD 北大核心 2024年第4期207-213,共7页
为实现对天麻中天麻素和对羟基苯甲醇含量的快速、无损检测,以云南昭通乌天麻为实验对象,采集900~1 700 nm波长范围内的光谱数据。首先,采用卷积平滑和标准正态变量变换进行光谱数据预处理,其次通过竞争性自适应重加权采样法(competitiv... 为实现对天麻中天麻素和对羟基苯甲醇含量的快速、无损检测,以云南昭通乌天麻为实验对象,采集900~1 700 nm波长范围内的光谱数据。首先,采用卷积平滑和标准正态变量变换进行光谱数据预处理,其次通过竞争性自适应重加权采样法(competitive adapative reweighted sampling,CARS)与迭代保留信息变量算法进行特征波长的提取,根据基于特征波长建立最小二乘支持向量回归(least squares support vector machine,LSSVR)模型的结果,选择最佳特征波长提取方法。为了提高模型的准确率,本研究引入人工兔智能算法对LSSVR中的正则化参数γ和核函数密度σ2进行优化,并与粒子群优化算法(particle swarm optimization,PSO)、灰狼优化算法(grey wolf optimizer,GWO)进行对比,评估人工兔优化算法(artificial rabbits optimization,ARO)的优越性。结果表明,ARO算法在寻优速度、寻优能力上优于PSO、GWO;天麻素、对羟基苯甲醇的最佳预测模型均为CARS-AROLSSVR,其Rp2分别为0.969 6和0.957 7,预测均方根误差分别为0.014和0.020。综上,近红外光谱可用于天麻中有效成分的定量检测,本研究可为天麻快速检测装置的研发提供理论依据。 展开更多
关键词 近红外光谱 天麻 最小二乘支持向量回归 人工兔优化算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部