The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element meth...The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons. As examples of applications, spectral element methods for two model problems, with the spectral accuracy in certain Jacobi weighted Sobolev spaces, are proposed. The techniques developed in this paper are also applicable to other higher order methods.展开更多
In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are es...In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique, with which we could handle mixed inho- mogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms is proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.展开更多
A Legendre spectral approximation based on the pressure stabilization method for non-periodic, unsteady Navier-Stokes equations is considered. The generalized stability and the convergence are proved strictly. The app...A Legendre spectral approximation based on the pressure stabilization method for non-periodic, unsteady Navier-Stokes equations is considered. The generalized stability and the convergence are proved strictly. The approximation results in this paper are also useful for other non-linear problems.展开更多
The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numeri...The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.展开更多
基金supported by the National Natural Science Foundation of China (No. 10871131)the Fund for Doctoral Authority of China (No. 200802700001)+1 种基金the Shanghai Leading Academic Discipline Project(No. S30405)the Fund for E-institutes of Shanghai Universities (No. E03004)
文摘The authors investigate Petrov-Galerkin spectral element method. Some results on Legendre irrational quasi-orthogonal approximations are established, which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons. As examples of applications, spectral element methods for two model problems, with the spectral accuracy in certain Jacobi weighted Sobolev spaces, are proposed. The techniques developed in this paper are also applicable to other higher order methods.
文摘In this paper, we investigate spectral method for mixed inhomogeneous boundary value problems in three dimensions. Some results on the three-dimensional Legendre approxima- tion in Jacobi weighted Sobolev space are established, which improve and generalize the existing results, and play an important role in numerical solutions of partial differential equations. We also develop a lifting technique, with which we could handle mixed inho- mogeneous boundary conditions easily. As examples of applications, spectral schemes are provided for three model problems with mixed inhomogeneous boundary conditions. The spectral accuracy in space of proposed algorithms is proved. Efficient implementations are presented. Numerical results demonstrate their high accuracy, and confirm the theoretical analysis well.
文摘A Legendre spectral approximation based on the pressure stabilization method for non-periodic, unsteady Navier-Stokes equations is considered. The generalized stability and the convergence are proved strictly. The approximation results in this paper are also useful for other non-linear problems.
文摘The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.