期刊文献+
共找到1,793篇文章
< 1 2 90 >
每页显示 20 50 100
Utilizing auxin dwarf genes to optimize seed yield and lodging resistance in rapeseed
1
作者 Hongxiang Lou Yan Peng +10 位作者 Chunyun Wang Zongkai Wang Bowen Zhao Ali Mahmoud El-Badri Maria Batool Bo Wang Jing Wang Zhenghua Xu Jie Zhao Jie Kuai Guangsheng Zhou 《The Crop Journal》 SCIE CSCD 2024年第4期1208-1221,共14页
Direct-seeding rapeseed production at high plant density raises the risk of lodging.We investigated the use of dwarf genes to improve rapeseed plant architecture to balance yield and lodging.Three genotypes with diffe... Direct-seeding rapeseed production at high plant density raises the risk of lodging.We investigated the use of dwarf genes to improve rapeseed plant architecture to balance yield and lodging.Three genotypes with different plant architectures(dwarf sca^(HS5),semi-dwarf+/sca^(HS5),and tall ^(HS5))were evaluated under varying nitrogen rates(N1,N2,and N3:120,240,and 360 kg N ha^(-1))and plant densities(D1,D2,and D3:15,45,and 75 plants m^(-2))from 2019 to 2022.The results showed that increasing N rate positively influenced yield while decreasing lodging resistance in all genotypes.Increasing plant density(D2-D3)enhanced lodging resistance and yield in sca^(HS5) and+/sca^(HS5),but reduced yield in ^(HS5).Compared to the two parents,+/sca^(HS5) exhibited moderate expressions of IAA3,GH3.15,and SAUR30 in stems under N2D3,resulting in reduced plant height and increased compactness.Additionally,+/sca^(HS5) had a thicker silique layer than ^(HS5) by 14.7%,and it had a significant correlation between branch height/angle and yield.Increasing N rate led to increased lignin and pectin contents,while cellulose content decreased.Increasing plant density resulted in greater stem cellulose content and CSLA3/7 expression in sca^(HS5) and+/sca^(HS5),but decreased in ^(HS5).Compared to ^(HS5),+/sca^(HS5) exhibited higher expressions of ARAD1 and GAUT4,along with a 51.1%increase in pectin content,leading to improved lodging resistance under N2D3.Consequently,+/sca^(HS5) showed a 46.4%higher yield and 38.9%lodging resistance than ^(HS5) under N2D3,while sca^(HS5) demonstrated strong lodging resistance but lower yield potential.Overall,this study underscores the potential of utilizing auxin dwarf genes to optimize the trade-off between yield and lodging resistance in rapeseed and the possibility of maximizing yield potential by optimizing the plant architecture of+/sca^(HS5) through nitrogen reduction and dense planting. 展开更多
关键词 RAPESEED Plant density NITROGEN lodging AUXIN
下载PDF
Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment
2
作者 Yibo Hu Feng Qin +6 位作者 Zhen Wu Xiaoqin Wang Xiaolong Ren Zhikuan Jia Zhenlin Wang Xiaoguang Chen Tie Cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2211-2226,共16页
Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan... Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance. 展开更多
关键词 canopy light environment LIGNIN lodging population distribution WHEAT
下载PDF
Optimizing nitrogen management can improve stem lodging resistance and stabilize the grain yield of japonica rice in rice-crayfish coculture systems
3
作者 Qiang Xu Jingyong Li +5 位作者 Hui Gao Xinyi Yang Zhi Dou Xiaochun Yuan Weiyan Gao Hongcheng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期3983-3997,共15页
Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have ... Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have performed such investigations in rice-crayfish coculture(RC).We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security.We conducted a two-factor(rice farming mode and N management practice)field experiment from2021 to 2022 to test our hypothesis.The rice farming modes included RM and RC,and the N management practices included no nitrogen fertilizer,conventional N application,and optimized N treatment.The rice yield and lodging resistance characteristics,such as morphology,mechanical and chemical characteristics,anatomic structure,and gene expression levels,were analyzed and compared among the treatments.Under the same N application practice,RC decreased the rice yield by 11.1-24.4% and increased the lodging index by 19.6-45.6% compared with the values yielded in RM.In RC,optimized N application decreased the plant height,panicle neck node height,center of gravity height,bending stress,and lodging index by 4.0-4.8%,5.2-7.8%,0.5-4.5%,5.5-10.5%,and 1.8-19.5%,respectively,compared with those in the conventional N application practice.Furthermore,it increased the culm diameter,culm wall thickness,breaking strength,and non-structural and structural carbohydrate content by 0.8-4.9%,2.2-53.1%,13.5-19.2%,2.2-24.7%,and 31.3-87.2%,respectively.Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode.Furthermore,optimized N application upregulated genes involved in lignin and cellulose synthesis,thereby promoting lower internodes on the rice stem and enhancing lodging resistance.Optimized N application in RC significantly reduced the lodging index by 1.8-19.5%and stabilized the rice yield(>8,570 kg ha~(-1)on average).This study systematically analyzed and compared the differences in lodging characteristics between RM and RC.The findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application. 展开更多
关键词 RICE lodging resistance nitrogen regulation anatomical structure rice-crayfish coculture
下载PDF
Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose 被引量:4
4
作者 DONG Xiu-chun QIAN Tai-feng +4 位作者 CHU Jin-peng ZHANG Xiu LIU Yun-jing DAI Xing-long HE Ming-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第5期1351-1365,共15页
Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowi... Delayed sowing mitigates lodging in wheat. However, the mechanism underlying the enhanced lodging resistance in wheat has yet to be fully elucidated. Field experiments were conducted to investigate the effects of sowing date on lignin and cellulose metabolism, stem morphological characteristics, lodging resistance, and grain yield. Seeds of Tainong 18,a winter wheat variety, were sown on October 8(normal sowing) and October 22(late sowing) during both of the 2015–2016 and 2016–2017 growing seasons. The results showed that late sowing enhanced the lodging resistance of wheat by improving the biosynthesis and accumulation of lignin and cellulose. Under late sowing, the expression levels of key genes(Ta PAL, Ta CCR, Ta COMT, TaCAD, and TaCesA1, 3, 4, 7, and 8) and enzyme activities(TaPAL and TaCAD) related to lignin and cellulose biosynthesis peaked 4–12 days earlier, and except for the TaPAL, TaCCR, and TaCesA1 genes and TaPAL, in most cases they were significantly higher than under normal sowing. As a result, lignin and cellulose accumulated quickly during the stem elongation stage. The mean and maximum accumulation rates of lignin and cellulose increased, the maximum accumulation contents of lignin and cellulose were higher, and the cellulose accumulation duration was prolonged. Consequently, the lignin/cellulose ratio and lignin content were increased from 0 day and the cellulose content was increased from 11 days after jointing onward. Our main finding is that the improved biosynthesis and accumulation of lignin and cellulose were responsible for increasing the stem-filling degree, breaking strength, and lodging resistance. The major functional genes enhancing lodging resistance in wheat that are induced by delayed sowing need to be determined. 展开更多
关键词 CELLULOSE LATE SOWING LIGNIN lodging resistance wheat
下载PDF
Nitrogen management improves lodging resistance and production in maize(Zea mays L.)at a high plant density 被引量:5
5
作者 Irshad AHMAD Maksat BATYRBEK +6 位作者 Khushnuma IKRAM Shakeel AHMAD Muhammad KAMRAN Misbah Raham Sher KHAN HOU Fu-jiang HAN Qing-fang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期417-433,共17页
Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,ligni... Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density. 展开更多
关键词 high plant density lodging resistance MAIZE nitrogen rates nitrogen application modes
下载PDF
Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability 被引量:1
6
作者 ZHANG Guang-xin ZHAO De-hao +3 位作者 FAN Heng-zhi LIU Shi-ju LIAO Yun-cheng HAN Juan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第10期3006-3021,共16页
A mixture of controlled-release urea and normal urea(CRUNU)is an efficient nitrogen(N)fertilizer type,but little is known about its effects on stem lodging resistance,grain yield,and yield stability of wheat.In this s... A mixture of controlled-release urea and normal urea(CRUNU)is an efficient nitrogen(N)fertilizer type,but little is known about its effects on stem lodging resistance,grain yield,and yield stability of wheat.In this study,a 4-year field experiment(from 2017 to 2021)was conducted to analyze the effects of N fertilizer types(CRUNU and normal urea(NU))and application rates(low level(L),135 kg ha^(–1);medium level(M),180 kg ha^(–1);high level(H),225 kg ha^(–1))on population lodging resistance,basal internode strength,lignin content and synthetase activity,stem lodging resistance,grain yield,and yield stability of wheat.Our results showed that the two N fertilizer types had the highest lodging rate under high N application rates,and the M-CRUNU treatment showed the lowest lodging rate.Compared with NU,CRUNU improved the wheat population lodging resistance under the three N application rates,mainly related to improving wheat population characteristics and breaking the strength of the second basal internode.Correlation analysis showed that the breaking strength of the second basal internode was related to the physical characteristics,chemical components,and micro-structure of the internode.Compared with NU,CRUNU significantly increased wheat grain yield by 4.47,14.62,and 3.12%under low,medium,and high N application rates,respectively.In addition,CRUNU showed no significant difference in grain yield under medium and high N application rates,but it presented the highest yield stability under the medium N application rate.In summary,CRUNU,combined with the medium N application rate,is an efficient agronomic management strategy for wheat production. 展开更多
关键词 controlled-release urea lodging grain yield yield stability WHEAT
下载PDF
The relationships between maize(Zea mays L.)lodging resistance and yield formation depend on dry matter allocation to ear and stem 被引量:1
7
作者 Ping Zhang Shuangcheng Gu +5 位作者 Yuanyuan Wang Chenchen Xu Yating Zhao Xiaoli Liu Pu Wang Shoubing Huang 《The Crop Journal》 SCIE CSCD 2023年第1期258-268,共11页
Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yi... Lodging is a critical constraint to yield increase.There appear to be tradeoffs between yield formation and lodging resistance in maize.Hypothetically,it is feasible to reduce lodging risk as well as increase grain yield by optimizing dry-matter allocation to different organs under different environments.A three-year field experiment was conducted using four maize cultivars with differing lodging resistances and five growing environments in 2018–2020.Lodging-susceptible(LS)cultivars on average yielded more than lodging-resistant(LR)cultivars when lodging was not present.The yield components kernel number per ear(KN)and thousand-kernel weight(TKW)were both negatively correlated with lodging resistance traits(stalk bending strength,rind penetration strength,and dry matter weight per internode length).Before silking,the LR cultivar Lishou 1(LS1)transported more assimilates to the basal stem,resulting in a thicker basal stem,which reduced dry matter allocation to the ear and in turn KN.The lower KN of LS1 was also due partly to the lower plant height(PH),which increased lodging resistance but limited plant dry matter production.In contrast,the LS cultivars Xianyu 335(XY335)and Xundan 20(XD20)produced and allocated more photoassimilates to ears,but limited dry matter allocation to stems.After silking,LS cultivars showed higher TKW than LR cultivars as a function of high photoassimilate productivity and high assimilate allocation to the ear.The higher lodging resistance of LS1 was due mainly to the greater assimilate allocation to stem after silking and lower PH and ear height(EH).High-yielding and high-LR traits of Fumin(FM985)were related to optimized EH and stem anatomical structure,higher leaf productivity,low assimilate demand for kernel formation,and assimilate partitioning to ear.A high presilking temperature accelerated stem extension but reduced stem dry matter accumulation and basal stem strength.Post-silking temperature influences lodging resistance and yield more than other environmental factors.These results will be useful in understanding the tradeoffs between KN,KW,and LR in maize and environmental influences on these tradeoffs. 展开更多
关键词 CORN lodging Yield formation Physical traits Dry matter allocation
下载PDF
Effects of paclobutrazol application on plant architecture,lodging resistance,photosynthetic characteristics,and peanut yield at different single-seed precise sowing densities
8
作者 Jihao Zhao Huajiang Lai +4 位作者 Chen Bi Mengjie Zhao Yanling Liu Xiangdong Li Dongqing Yang 《The Crop Journal》 SCIE CSCD 2023年第1期301-310,共10页
The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective pra... The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield. 展开更多
关键词 Sowing density Paclobutrazol application lodging resistance Photosynthetic characteristics Peanut yield
下载PDF
Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean
9
作者 GAO Hua-wei YANG Meng-yuan +9 位作者 YAN Long HU Xian-zhong HONG Hui-long ZHANG Xiang SUN Ru-jian WANG Hao-rang WANG Xiao-bo LIU Li-ke ZHANG Shu-zhen QIU Li-juan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期434-446,共13页
Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an under... Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an underexplored option for further improving yield.We compared the relationships between yield-related traits,lodging resistance,and petioleassociated phenotypes in the short petiole germplasm M657 with three control accessions during 2017–2018 in four locations in the Huang–Huai region,China.The results showed that M657 exhibited stable and high tolerance to high planting density and resistance to lodging,especially at the highest density(8×105 plants ha–1).The regression analysis indicated that a shorter petiole length was significantly associated with increased lodging resistance.The yield analysis showed that M657 achieved higher yields under higher densities,especially in the northern part of the Huang–Huai region.Among the varieties,there were markedly different responses to intra-and inter-row spacing designs with respect to both lodging and yield that were related to location and density.Lodging was positively correlated with planting density,plant height,petiole length,and number of effective branches,but negatively correlated with stem diameter,seed number per plant,and seed weight per plant.The yield of soybean was increased by appropriately increasing the planting density on the basis of the current soybean varieties in the Huang–Huai region.This study provides a valuable new germplasm resource for the introgression of compact architecture traits that are amenable to providing a high yield in high density planting systems,and it establishes a high-yield model of soybean in the Huang–Huai region. 展开更多
关键词 SOYBEAN short petiole high density and lodging yield-related phenotypes
下载PDF
Effects of Applying Organic Fertilizer on Rice Lodging Resistance and Yield 被引量:28
10
作者 邓文 青先国 杨玉 《Agricultural Science & Technology》 CAS 2010年第2期98-101,共4页
[Objective]The aim was to provide a scientific basis for the reasonable application of organic fertilizer to improve lodging resistance and yield of rice.[Method]The application of four different kinds of organic fert... [Objective]The aim was to provide a scientific basis for the reasonable application of organic fertilizer to improve lodging resistance and yield of rice.[Method]The application of four different kinds of organic fertilizer was applied to study their effects on rice lodging resistance and yield of late rice Yuzhengxiang that with high quality.[Result] The effect of applying organic fertilizer for improving rice lodging resistance capability was:biogas residues> chicken manure > rapeseed cake> tobac... 展开更多
关键词 RICE lodging resistance YIELD Organic fertilizer
下载PDF
Effects of Planting Density and Nitrogen Amount on Stalk Lodging-Resistance and Yield of Summer Maize in Sichuan Basin 被引量:6
11
作者 陈尚洪 陈红琳 +1 位作者 沈学善 刘定辉 《Agricultural Science & Technology》 CAS 2012年第10期2147-2151,共5页
[Objective] The experiment was conducted to explore the suitable planting density and nitrogen amount for summer maize in Sichuan Basin with the objective to provide technical reservation and scientific basis for high... [Objective] The experiment was conducted to explore the suitable planting density and nitrogen amount for summer maize in Sichuan Basin with the objective to provide technical reservation and scientific basis for high-yielding cultivation technique.[Method] A widely planted maize cultivar 'Chengdan 30' was used as experimental material to study the effects of planting density and nitrogen amount on the stalk agronomic traits,stalk lodging-resistance mechanical characters,stalk breaking percentage and yield of maize.Experiment was arranged in a two-factor split plot design with three replicates.The planting density was the main factor with three density gradients(4.5×10^4,6.0×10^4 and 7.5×10^4 plants/hm^2) and the nitrogen amount was the second factor with two different levels of nitrogen content(300 and 375 kg/hm^2).[Result] The stalk lodging-resistance and yield were affected by planting density significantly.The increase of planting density would result in an increase of internode length and decrease of internode diameter,dry matter weight of per unit stalk length,rind penetration strength and breaking resistance of 3rd and 4th basal internodes.When planting density increased from 6.0×10^4 plants/hm2 to 7.5×10^4 plants/hm^2,the stalk breaking percentage in the whole growing season increased by 17.17%,and the yield reduced by 17.58%.The interaction between planting density and nitrogen amount affected the stalk breaking percentage in the whole growing season and yield significantly.The treatment with planting density of 6.0×104 plants/hm^2 and nitrogen amount of 375 kg/hm^2 of pure N was an optimal combination,which may not only control the stalk breaking percentage of whole growing stage effectively,but also could obtain an optimum grain yield.[Conclusion] In Sichuan Basin,the appropriate planting density and nitrogen amount for summer maize were 6.0×10^4 plants/hm^2 and 375 kg/hm^2. 展开更多
关键词 Summer maize Planting density Nitrogen amount Stalk lodging resistance YIELD
下载PDF
QTL Analysis of Lodging-related Morphological Traits of Soybean under Two Eco-environments 被引量:1
12
作者 范冬梅 杨振 +9 位作者 马占洲 曾庆力 杜翔宇 蒋洪蔚 刘春燕 韩冬伟 栾怀海 裴宇峰 陈庆山 胡国华 《Agricultural Science & Technology》 CAS 2012年第12期2518-2525,共8页
[Objective] This study is to map QTLs for lodging-related morphological traits of soybean, aiming at providing basis for breeding lodging-resistant varieties. [Method] To map the QTLs for lodging-related morphological... [Objective] This study is to map QTLs for lodging-related morphological traits of soybean, aiming at providing basis for breeding lodging-resistant varieties. [Method] To map the QTLs for lodging-related morphological traits, an F216-F218 RIL population containing 147 lines derived from a cross between Charleston as female and Dongnong 594 as male parent were used as experimental materials in this study. Totally 164 SSR primers screened out from amplification on two parents, were employed to amplify the F216-F218 RIL population for constructing a genetic linkage map. The QTLs for nodes on main stem, stem thickness and stem weight of the F216-F218 RIL soybean population were investigated in two eco-environments for three years. [Result] Sixteen QTLs for nodes on main stem were detected in A1, B1, C2, Dla, D2, F, G, H and N linkage groups, respectively; Ten QTLs for stem thickness in A1, B1, C2, Dla, E and G linkage groups, respectively; Fifteen QTLs for stem weight in A1, A2, C2, Dla, Dlb and G linkage groups, respectively. Of these QTLs, five for nodes on main stem, one for stem thickness and six for stem weight could be detected by both CIM and MIM, accounting for 8.6%-27.0%, 9.0%- 11.0%, and 6.0%-39.0% of the general phenotypic variation, respectively. From ex- perimental data of two years, Three QTLs for nodes on main stem and two for stem weight could be detected, accounting for 8.0%-60.2% and 10.0%-23.0% of the general phenotypic variation, respectively; while no QTL for stem thickness was re- peatedly detected during more than two years. [Conclusion] Comparison of the QTLs mapped for nodes on main stem, stem thickness and stem weight indicates that these three morphological traits are closely related with lodging-resistance of soybean. 展开更多
关键词 SOYBEAN lodging QTL analysis
下载PDF
Effects of Film-mulched and Dry-farming on Lodging Resistance of Medium Hybrid Rice 被引量:1
13
作者 杨玉 邓文 青先国 《Agricultural Science & Technology》 CAS 2010年第8期94-97,148,共5页
Effects of film-mulched and dry-farming on lodging resistance of medium hybrid rice 88S/1128 at late growth stage was studied in this study. The result suggested that the increasing of lodging resistance of rice showe... Effects of film-mulched and dry-farming on lodging resistance of medium hybrid rice 88S/1128 at late growth stage was studied in this study. The result suggested that the increasing of lodging resistance of rice showed a trend of no film-mulched and water-farmingfilm-mulched and water-farmingno film-mulched and dry-farmingfilm-mulched and dry-faming. The lodging index of water-farming treatment decreased by 9.47%-24.10% compared to that of dry-farming treatment,while the lodging index of no film-mulched decreased by 14.68%-17.09% compared to that of film-mulched treatment; lodging index was significant or extremely significant negative related to resistant press per plant,transpiration rate,intercellular CO2 concentration and photosynthetic rate but extremely significant positive related to biomass per plant; the largest contributed factor in lodging was the plant biomass,while the factors had greatest contribution to lodging resistance showed an order of resistant press per planttranspiration rateintercellular CO2 concentrationphotosynthetic ratestomatal conductance. 展开更多
关键词 RICE lodging resistance Film-mulched and dry-farming
下载PDF
Stem Morphological Structure of Super Hybrid Rice and Its Relationship with Lodging Resistance
14
作者 田文涛 邵平 +3 位作者 王燚 魏中伟 王晓玲 马国辉 《Agricultural Science & Technology》 CAS 2017年第7期1152-1157,共6页
The stem morphology and anatomical structure of rice, as well as their relationship with lodging resistance, were studied with six super hybrid rice varieties as the tested materials. The results showed that the rice ... The stem morphology and anatomical structure of rice, as well as their relationship with lodging resistance, were studied with six super hybrid rice varieties as the tested materials. The results showed that the rice varieties with stronger lodging resistance were characterized by shorter basal elongated internodes and thicker stem base. The lodging index of hybrid rice was positively correlated with the lengths of the first, second and third basal elongated internodes (P〈0.01) and was negatively correlated with the thickness of basal stem wall and the number and area of small vascular bundles, the area of large vascular bundles and the total area of vascular bundles of the second basal elongated internode (P〈0.05). The correlations between lodging index and plant height, maximum culm diameter of stem base and minimum culm diameter of stem base were not significant. It indi- cates that the lodging resistance of super hybrid rice can be improved by shorten- ing the length of basal elongated internodes, thickening the wall of stem base and increasing the number and area of vascular bundles of basal elongated internodes. 展开更多
关键词 Super hybrid rice lodging resistance Morphological anatomy STEM
下载PDF
Principal Component Analysis on Traits Related to Lodging Resistance of Plateau Japonica Rice
15
作者 丁明亮 浦秋红 +2 位作者 高春琼 袁平荣 苏振喜 《Agricultural Science & Technology》 CAS 2015年第6期1115-1120,共6页
Objective] This study was conducted to investigate the main factors affect-ing the lodging resistance of plateau japonica rice. [Method] Twenty agronomic traits related to lodging resistance of plateau japonica rice w... Objective] This study was conducted to investigate the main factors affect-ing the lodging resistance of plateau japonica rice. [Method] Twenty agronomic traits related to lodging resistance of plateau japonica rice were analyzed by principal component analysis and correlation analysis among 26 varieties/lines of plateau japonica rice. [Result] The lodging resistance of the 26 varieties/lines had great dif-ference among different agronomic traits. Plant height, and wal thickness of the 4th, 3rd and 2nd internodes under the panicle had the most important influence on lodging resistance, while the diameter of the 3rd, 2nd, 4th, 1st nodes under the panicle, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st internode under the panicle had less influence. The other nine agronomic traits of rice culm did not affect or indirectly affected lodging resistance through above-mentioned agro-nomic traits. Lodging resistance had significant correlations with plant height, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st, 2nd, 3rd and 4th internodes under the panicle and diameter of the 1st, 2nd, 3rd and 4th node sunder the panicle, had insignificant correlations with panicle length, panicle weight, length of the 1st and 2nd internodes under the panicle, diameter of the 1st, 2nd, 3rd and 4th internodes under the panicle, diameter of the 5th node under the panicle. [Conclu-sion] More attention should be paid to the main factors affecting lodging resistance in breeding to improve lodging resistance of plateau japonica rice. 展开更多
关键词 Plateau japonica rice lodging resistance Agronomic traits Principal component analysis
下载PDF
Effects of Four Kinds of Plant Growth Regulators on Maize Yield and Lodging Resistance
16
作者 孙扣忠 赫明涛 《Agricultural Science & Technology》 CAS 2017年第3期540-542,共3页
The research reviewed use effects of Yuhuangjin, Xishibao, Zhuangfengling and Jianzhuangsu on Jinhai No. 5. The results showed plant height and ear height declined in varying degrees, as well as empty-stalk rate and l... The research reviewed use effects of Yuhuangjin, Xishibao, Zhuangfengling and Jianzhuangsu on Jinhai No. 5. The results showed plant height and ear height declined in varying degrees, as well as empty-stalk rate and lodging rate, with the plant growth regulators applied. Economic characters all improved, including ear length and diameter, barren-tip length and hundred-seed weight, and corn yield went up significantly on average. For example, the increased yield can be as high as 17.43% when Yuhuangjin was applied at 30 ml/hm^2. 展开更多
关键词 Growth Regulators MAIZE lodging resistance YIELD
下载PDF
Effects of Different Nitrogen Fertilizer Levels on Lodging and Yield of Rice 被引量:5
17
作者 杨和川 武立权 +3 位作者 韩新峰 邵辉 柯健 王荣富 《Agricultural Science & Technology》 CAS 2012年第7期1456-1459,共4页
[Objective] This study aimed to investigate the effects of different fertilizer levels on lodging and yield of rice. [Method] A total of four treatments were designed and applied with 6, 9, 12 and 15 kg of nitrogen fe... [Objective] This study aimed to investigate the effects of different fertilizer levels on lodging and yield of rice. [Method] A total of four treatments were designed and applied with 6, 9, 12 and 15 kg of nitrogen fertilizer, respectively. After seedling transplanting, the biological characteristics of rice at different growth stages in each treatment and the biological and economic characteristics of rice after lodging were determined for statistical analysis. [Result] Application with 15 kg of nitrogen fertilizer had significant promotion effect on the increase of rice yield; compared with the control (6 kg of nitrogen fertilizer), rice yield in three experimental treatments (9, 12 and 15 kg of nitrogen fertilizer, respectively) increased by 50.74%, 89.11% and 94.48%, respectively; lodging-resistance mechanical strengths of the three experimental treatments were 103.97%, 132.01% and 89.83% of the control, respectively; rice lodging resistance of treatment C (12 kg of nitrogen fertilizer) was the strongest, with the highest yield. [Conclusion] This study provides reference data and technical support for the rational fertilization of rice production. 展开更多
关键词 DIFFERENT nitrogen fertilizer LEVELS RICE Fresh weight YIELD lodging
下载PDF
Anatomical and chemical characteristics associated with lodging resistance in wheat 被引量:47
18
作者 Eryan Kong Dongcheng Liu +7 位作者 Xiaoli Guo Wenlong Yang Jiazhu Sun Xin Li Kehui Zhan Dangqun Cui Jinxing Lin Aimin Zhang 《The Crop Journal》 SCIE CAS 2013年第1期43-49,共7页
Anatomical and chemical characteristics of stems affect lodging in wheat(Triticum aestivum L.) cultivars. Traits associated with lodging resistance, such as plant height, stem strength, culm wall thickness, pith diame... Anatomical and chemical characteristics of stems affect lodging in wheat(Triticum aestivum L.) cultivars. Traits associated with lodging resistance, such as plant height, stem strength, culm wall thickness, pith diameter, and stem diameter, were extensively investigated in earlier studies. However, the solid stem trait was rarely considered. In this study, we measured a range of anatomical and chemical characteristics on solid and hollow stemmed wheat cultivars. Significant correlations were detected between resistance to lodging and several anatomical features, including width of mechanical tissue, weight of low internodes, and width of stem walls. Morphological features that gave the best indication of improved lodging resistance were increased stem width, width of mechanical tissue layer, and stem density. Multiple linear regression analysis showed that 99% of the variation in lodging resistance could be explained by the width of the mechanical tissue layer, suggesting that solid stemmed wheat has several anatomical features for increasing resistance to lodging. In addition, microsatellite markers GWM247 and GWM340 were linked to a single solid stem QTL on chromosome 3BL in a population derived from the cross Xinongshixin(solid stem)/Line 3159(hollow stem). These markers should be valuable in breeding wheat for solid stem. 展开更多
关键词 Molecular MARKER SOLID stemmed WHEAT lodging resistance ANATOMICAL FEATURE
下载PDF
Research progress on reduced lodging of high-yield and-density maize 被引量:48
19
作者 XUE Jun XIE Rui-zhi +5 位作者 ZHANG Wang-feng WANG Ke-ru HOU Peng MING Bo GOU Ling LI Shao-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2717-2725,共9页
Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor r... Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars. 展开更多
关键词 MAIZE lodging resistance stalk strength high yield high plant density
下载PDF
Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat 被引量:23
20
作者 Xinglong Dai Yuechao Wang +5 位作者 Xiuchun Dong Taifeng Qian Lijun Yin Shuxin Dong Jinpeng Chu Mingrong He 《The Crop Journal》 SCIE CAS CSCD 2017年第6期541-552,共12页
Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the ... Lodging resistance of winter wheat(Trnticum aestivum L.) can be increased by late sowing.However, whether grain yield and nitrogen use efficiency(NUE) can be maintained with delayed sowing remains unknown. During the 2013-2014 and 2014-2015 growing seasons, two winter wheat cultivars were sown on three dates(early sowing on October 1, normal so,wing on October8, and late sowing on October 15) to investigate the responses of lodging resistance, grain yield,and NUE to sowing date. No significant differences in lodging resistance, grain yield, or NUE between early and normal sowing were observed. Averaging over the two cultivars and years,postponing the sowing date significantly increased lodging resistance by 53.6% and 49.6%compared with that following early and normal sowing, respectively. Lodging resistance was improved mainly through a reduction in the culm height at the center of gravity and an increase in the tensile strength of the base internode. Late sowing resulted in similar grain yield as well as kernel weight and number of kernels per square meter, compared to early and normal sowing.Averaging over the two cultivars and years, delayed sowing resulted in a reduction in nitrogen uptake efficiency(UPE) by 11.0% and 9.9% compared to early and normal sowing, respectively,owing to reduced root length density and dry matter accumulation before anthesis. An average increase in nitrogen utilization efficiency(UTE) of 12.9% and 11.2% compared to early and normal sowing, respectively, was observed with late sowing owing to a reduction in the grain nitrogen concentration. The increase in UTE offset the reduction in UPE, resulting in equal NUEs among all sowing dates. Thus, sowing later than normal could increase lodging resistance while maintaining grain yield and NUE. 展开更多
关键词 Grain yield lodging resistance Nitrogen use efficiency SOWING DATE Winter wheat
下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部