The global energy system needs a revolutionary transition from today’s fossil fuel to a low carbon energy system by having deep carbonization in all energy demand sectors.Especially in the transport sector,fossil fue...The global energy system needs a revolutionary transition from today’s fossil fuel to a low carbon energy system by having deep carbonization in all energy demand sectors.Especially in the transport sector,fossil fuel-based vehicles contribute to a more massive amount of greenhouse gas emissions(GHG),mainly carbon dioxide(CO_(2))and particulate matter(PM2.5),affecting human health,society,and the climate system.Hydrogen and fuel cell technology is a promising low carbon transition pathway that supports GHG mitigation and achieves sustainable development.Although hydrogen and fuel cells are assuring,fuel cell vehicle expensiveness and the high cost of hydrogen production with the low carbon footprint are significant hindrances for its widespread deployment.Besides the situation above,the present corona virus(COVID-19)has devastated our global economy and ramps down the future of fossil fuel.It provides opportunities to rethink and reshape our energy system to a low carbon footprint.By utilizing the situation,governments and policymakers need to eliminate fossil fuel and invest in the hydrogen and fuel cell technologies deployment as future energy systems.This review article provides a technical overview of a low carbon energy system,production,and end-use service in a hydrogen economy perspective for developing a sustainable energy future.The techno-economic analysis of the different hydrogen production routines and fuel cell vehicles and their infrastructures are primarily focused.Finally,a long-term policy alignment was outlined to advance the hydrogen energy system for post-COVID-19 in the United Nation’s(UN)sustainable development goals framework.展开更多
This paper presents an overview of the current status of the development of the smart grid in Great Britain(GB).The definition,policy and technical drivers,incentive mechanisms,technological focus,and the industry'...This paper presents an overview of the current status of the development of the smart grid in Great Britain(GB).The definition,policy and technical drivers,incentive mechanisms,technological focus,and the industry's progress in developing the smart grid are described.In particular,the Low Carbon Networks Fund and Electricity Network Innovation Competition projects,together with the rollout of smart metering,are detailed.A more observable,controllable,automated,and integrated electricity network will be supported by these investments in conjunction with smart meter installation.It is found that the focus has mainly been on distribution networks as well as on real-time flows of information and interaction between suppliers and consumers facilitated by improved information and communications technology,active power flow management,demand management,and energy storage.The learning from the GB smart grid initiatives will provide valuable guidelines for future smart grid development in GB and other countries.展开更多
The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of S...The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of SPHC for 240 min under air condition, and the temperature range was from 500 to 900 ℃. Scanning electron microscope (SEM) was used to observe cross-sectional scale morphology and analyze composition distribution of oxide scales. The morphology of oxide scale was classical three-layer structure. Fe2 03 developed as whiskers at the outermost lay- er, and interlayer was perforated-plate Fe3 04 while innermost layer was pyramidal FeO. From the oxidation curves, the oxidation mass gain per unit area with time was of parabolic relation and oxidation rate slowed down. On the ba- sis of experimental data, the isothermal oxidation kinetics model was derived and oxidation activation energy of SPHC steel was 127. 416 kJ/mol calculated from kinetics data.展开更多
基金the financial support from the Beijing Forbidden City scholarship(2018420021)。
文摘The global energy system needs a revolutionary transition from today’s fossil fuel to a low carbon energy system by having deep carbonization in all energy demand sectors.Especially in the transport sector,fossil fuel-based vehicles contribute to a more massive amount of greenhouse gas emissions(GHG),mainly carbon dioxide(CO_(2))and particulate matter(PM2.5),affecting human health,society,and the climate system.Hydrogen and fuel cell technology is a promising low carbon transition pathway that supports GHG mitigation and achieves sustainable development.Although hydrogen and fuel cells are assuring,fuel cell vehicle expensiveness and the high cost of hydrogen production with the low carbon footprint are significant hindrances for its widespread deployment.Besides the situation above,the present corona virus(COVID-19)has devastated our global economy and ramps down the future of fossil fuel.It provides opportunities to rethink and reshape our energy system to a low carbon footprint.By utilizing the situation,governments and policymakers need to eliminate fossil fuel and invest in the hydrogen and fuel cell technologies deployment as future energy systems.This review article provides a technical overview of a low carbon energy system,production,and end-use service in a hydrogen economy perspective for developing a sustainable energy future.The techno-economic analysis of the different hydrogen production routines and fuel cell vehicles and their infrastructures are primarily focused.Finally,a long-term policy alignment was outlined to advance the hydrogen energy system for post-COVID-19 in the United Nation’s(UN)sustainable development goals framework.
基金supported in part by the UK-China NSFC/ EPSRC OPEN project (EP/K006274/1 and 51261130473)the Horizon 2020 project P2P-Smart Test
文摘This paper presents an overview of the current status of the development of the smart grid in Great Britain(GB).The definition,policy and technical drivers,incentive mechanisms,technological focus,and the industry's progress in developing the smart grid are described.In particular,the Low Carbon Networks Fund and Electricity Network Innovation Competition projects,together with the rollout of smart metering,are detailed.A more observable,controllable,automated,and integrated electricity network will be supported by these investments in conjunction with smart meter installation.It is found that the focus has mainly been on distribution networks as well as on real-time flows of information and interaction between suppliers and consumers facilitated by improved information and communications technology,active power flow management,demand management,and energy storage.The learning from the GB smart grid initiatives will provide valuable guidelines for future smart grid development in GB and other countries.
基金Sponsored by National Natural Science Foundation of China(51204047)National Key Technology Research and Development Program in 12th Five-year Plan of China(2011BAE13B04)The Fundamental Research Funds for the Central Universities of China(N100307006)
文摘The oxidation kinetics and composition of oxide scales on low carbon steel (SPHC) were studied during i- sothermal oxidation. Thermogravimetric analyzer (TGA) was used to simulate isothermal oxidation process of SPHC for 240 min under air condition, and the temperature range was from 500 to 900 ℃. Scanning electron microscope (SEM) was used to observe cross-sectional scale morphology and analyze composition distribution of oxide scales. The morphology of oxide scale was classical three-layer structure. Fe2 03 developed as whiskers at the outermost lay- er, and interlayer was perforated-plate Fe3 04 while innermost layer was pyramidal FeO. From the oxidation curves, the oxidation mass gain per unit area with time was of parabolic relation and oxidation rate slowed down. On the ba- sis of experimental data, the isothermal oxidation kinetics model was derived and oxidation activation energy of SPHC steel was 127. 416 kJ/mol calculated from kinetics data.