期刊文献+
共找到4,217篇文章
< 1 2 211 >
每页显示 20 50 100
Low-cycle fatigue behavior of solutionized and aged WE43 magnesium alloys at room temperature
1
作者 Yong Cai Jianxiong Wei +2 位作者 Hong Yan Yipeng Chen Rongshi Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2284-2297,共14页
The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolu... The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolution was characterized by scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).The results showed that plastic strain amplitude decreased with the increasing cycle number in T4 alloy,which is due to the dense persistent slip bands(PSBs)and dynamic precipitates hinderingdislocation slip.In contrast,the plastic strain amplitude increases gradually in T6 alloy,which is attributed to the enhanced activation of pyramidal slip.The low-cycle fatigue life of T6 alloy with larger fatigue ductility coefficient is longer than that of T4 alloy.The Coffin-Manson model can accurately predict the fatigue life of T4 and T6 alloys compared to Jahed-Varvani(JV)energy model.For T4 alloy,the fatigue damage mechanism was dominated by basal slip.For T6 alloy,the enhanced pyramidal slip plays an important role to accommodate plastic deformation. 展开更多
关键词 low-cycle fatigue WE43 alloy Cyclic hardening/softening JV model DISLOCATION
下载PDF
Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91-Ca-Y alloys extruded at different temperatures 被引量:2
2
作者 Ye Jin Kim Young Min Kim +2 位作者 Jun Ho Bae Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期892-902,共11页
The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are inve... The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude. 展开更多
关键词 AZ91-Ca-Y Extrusion temperature MICROSTRUCTURE low-cycle fatigue fatigue life prediction model
下载PDF
Performances of fissured red sandstone after thermal treatment with constant-amplitude and low-cycle impacts
3
作者 Yongjun Chen Tubing Yin +3 位作者 P.G.Ranjith Xibing Li Qiang Li Dengdeng Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期561-587,共27页
In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandston... In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave. 展开更多
关键词 Red sandstone Temperature FISSURE Constant-amplitude and low-cycle(CALC) impact fatigue failure Response surface method(RSM)
下载PDF
Enhancing fatigue performance of AZ31 magnesium alloy components fabricated by cold metal transfer-based wire arc directed energy deposition through LPB
4
作者 Shambhu Kumar Manjhi Srikanth Bontha A.S.S.Balan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1638-1662,共25页
Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susc... Cold Metal Transfer-Based Wire Arc Directed Energy Deposition(CMT-WA-DED)presents a promising avenue for the rapid fabrication of components crucial to automotive,shipbuilding,and aerospace industries.However,the susceptibility to fatigue of CMT-WA-DED-produced AZ31 Mg alloy components has impeded their widespread adoption for critical load-bearing applications.In this study,a comprehensive investigation into the fatigue behaviour of WA-DED-fabricated AZ31 Mg alloy has been carried out and compared to commercially available wrought AZ31 alloy.Our findings indicate that the as-deposited parts exhibit a lower fatigue life than wrought Mg alloy,primarily due to poor surface finish,tensile residual stress,porosity,and coarse grain microstructure inherent in the WA-DED process.Low Plasticity Burnishing(LPB)treatment is applied to mitigate these issues,which induce significant plastic deformation on the surface.This treatment resulted in a remarkable improvement of fatigue life by 42%,accompanied by a reduction in surface roughness,grain refinement and enhancement of compressive residual stress levels.Furthermore,during cyclic deformation,WA-DED specimens exhibited higher plasticity and dislocation density compared to both wrought and WA-DED+LPB specimens.A higher fraction of Low Angle Grain Boundaries(LAGBs)in WA-DED specimens contributed to multiple crack initiation sites and convoluted crack paths,ultimately leading to premature failure.In contrast,wrought and WA-DED+LPB specimens displayed a higher percentage of High Angle Grain Boundaries(HAGBs),which hindered dislocation movement and resulted in fewer crack initiation sites and less complex crack paths,thereby extending fatigue life.These findings underscore the effectiveness of LPB as a post-processing technique to enhance the fatigue performance of WA-DED-fabricated AZ31 Mg alloy components.Our study highlights the importance of LPB surface treatment on AZ31 Mg components produced by CMT-WA-DED to remove surface defects,enabling their widespread use in load-bearing applications. 展开更多
关键词 Wire arc additive manufacturing AZ31 Mg alloy Low plasticity burnishing Low cycle fatigue test Strain amplitude
下载PDF
Stiffness Degradation Modeling for Composite Wind Turbine Blades Based on Full-Scale Fatigue Testing
5
作者 Haixia Kou Kongyuan Wei +1 位作者 Yanhu Liu Xuyao Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期517-528,共12页
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin... In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading. 展开更多
关键词 composite wind turbine blades fatigue damage stiffness degradation model full-scale fatigue testing
下载PDF
Fatigue test loading methodfor wagon body basedon measured load
6
作者 Qiang Zhang Xiaofeng Li Yundong Ma 《Railway Sciences》 2023年第1期68-83,共16页
Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to g... Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to generate the random load component spectrums of the car body under five working conditions,namely expansion,bouncing,rolling,torsion and pitching according to the typical motion attitude of the car body.Design/methodology/approach–On the basis of processing the measured load data,the random load component spectrums were equivalently converted into sinusoidal load component spectrums for bench test based on the principle of pseudo-damage equivalence of load.Relying on the fatigue and vibration test bench of the whole railway wagon,by taking each sinusoidal load component spectrum as the simulation target,the time waveform replication(TWR)iteration technology was adopted to create the drive signal of each loading actuator required for the fatigue test of car body on the bench,and the drive signal was corrected based on the equivalence principle of measured stress fatigue damage to obtain the fatigue test loads of car body under various typical working conditions.Findings–The fatigue test results on the test bench were substantially close to the measured test results on the line.According to the results,the relative error between the fatigue damage of the car body on the test bench and the measured damage on the line was within the range of16.03%–27.14%.Originality/value–The bench test results basically reproduced the fatigue damage of the key parts of the car body on the line. 展开更多
关键词 fatigue test of car body Measured load breakdown Load equivalence TWRiteration Drive signal
下载PDF
Microstructure evolution during heat treatment of Mg-Gd-Y-Zn-Zr alloy and its low-cycle fatigue behavior at 573K 被引量:7
7
作者 Luo-yi WU Hao-tian LI Zhong YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1026-1035,共10页
In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission ele... In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks. 展开更多
关键词 Mg.Gd.Y.Zn.Zr alloy long-period stacking order structure low-cycle fatigue at high temperature crack initiation and propagation
下载PDF
Low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys 被引量:2
8
作者 Chen Lijia Wang Di +1 位作者 Che Xin Li Feng 《China Foundry》 SCIE CAS 2012年第1期39-42,共4页
Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg ... Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast AI-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the diecast AI-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast AI-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively. 展开更多
关键词 permanent mold cast DIE-CAST aluminum alloy low-cycle fatigue fatigue life cyclic stress response
下载PDF
Mechanical and low-cycle fatigue behavior of stainless reinforcing steel for earthquake engineering applications 被引量:1
9
作者 Yihui Zhou Yu-Chen OU +1 位作者 George C. Lee Jerome S. O'Connor 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期449-457,共9页
Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need ... Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance. 展开更多
关键词 Stainless reinforcing steel low-cycle fatigue seismic applications corrosion resistance
下载PDF
CYCLIC SOFTENING IN HOT-WORKING DIE STEELS DURING LOW-CYCLE FATIGUE 被引量:1
10
作者 HU Zhenhua XIAO Jiexuan Huazhong University of Science and Technology,Wuhan,China HU Zhenhua,Associate Professor,Huazhong University of Science and Technology,Wuhan 430074,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第3期199-203,共5页
The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening... The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening is featured in both steels hardened in different conditions under the strain controlled amplitude range of Δε_t/2=0.6-1.8×10^(-2).The softening effect mainly occurs in some initial cycles and the stress amplitude varies slightly in the sequential cycles,i.e.the softening effect is minified.No obvious stress saturation phenomenon was ob- served during the whole cyclic deformation.The TEM analysis shows that the cyclic softening is related to heterogenity of plastic deformation.The softening of the tested steels is caused by the formation of the dislocation cell structure with low density and low internal stress,and by the fragmentation and redissolution of fine carbides into matrix. 展开更多
关键词 low-cycle fatigue hot work die steel cyclic softening
下载PDF
A NEW CYCLIC J-INTEGRAL FOR LOW-CYCLE FATIGUE CRACK GROWTH
11
作者 胡宏玖 郭兴明 +2 位作者 李培宁 谢禹钧 李洁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第2期149-160,共12页
The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The ... The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The definition, primary characteristics, physical interpretations and numerical evaluation of the new parameter were investigated in detail. Moreover, the new cyclic J-integral for LCF behaviors was validated by the compact tension (CT) specimens. Results show that the calculated values of the new parameter can correlate well with LCF crack growth rate, during constant-amplitude loading. In addition, the phenomenon of fatigue retardation was explained through the viewpoint of energy based on the concept of the new parameter. 展开更多
关键词 cyclic J-integral low-cycle fatigue constitutive equation numerical evaluation fatigue retardation
下载PDF
INVESTIGATION OF THE LOW-CYCLE FATIGUE AND FATIGUE CRACK GROWTH BEHAVIORS OF P91 BASE METAL AND WELD JOINTS
12
作者 H.C.Yang Y.Tu +1 位作者 M.M.Yu J.Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期597-600,共4页
Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, a... Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed. 展开更多
关键词 P91 pipe low-cycle fatigue fatigue crack growth
下载PDF
New Fatigue Test and Statistical Method for Metallic Materials Used in Vehicle Transmissions 被引量:1
13
作者 陈欣 项昌乐 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期39-42,共4页
Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts... Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts of each phase in fatigue tests and statistical treatment are clarified. The method proposed leads to three important properties. Reduced number of specimens brings to the advantage of lowering test expenditures. The whole test procedure has more flexibility for there is no need to conduct many tests at the same stress level as in traditional cases. 展开更多
关键词 fatigue test statistical method test specimens
下载PDF
Experimental study on uniaxial ratchetting-fatigue interaction of extruded AZ31 magnesium alloy with different plastic deformation mechanisms 被引量:2
14
作者 Yu Lei Hang Li +2 位作者 Yujie Liu Ziyi Wang Guozheng Kang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期379-391,共13页
The uniaxial ratchetting-fatigue interaction of extruded AZ31 magnesium(Mg)alloy is investigated by uniaxial stress-controlled cyclic tests at room temperature and with addressing the roles of different plastic deform... The uniaxial ratchetting-fatigue interaction of extruded AZ31 magnesium(Mg)alloy is investigated by uniaxial stress-controlled cyclic tests at room temperature and with addressing the roles of different plastic deformation mechanisms.Different stress levels are prescribed to reflect the cyclic plasticity of the alloy controlled by diverse deformation mechanisms(i.e.,dislocation slipping,deformation twinning and detwinning ones),and then the influences of stress level and stress rate on the ratchetting and fatigue life are discussed.The experimental results demonstrate that different evolution characteristics of whole-life ratchetting and fatigue life presented during cyclic tests with various mean stresses,stress amplitudes and stress rates are determined by the dominated plastic deformation mechanisms.It’s worth noting that the ratchetting can occur in the compressive direction even in the cyclic tests with a positive(tensile)mean stress,and the fatigue life increases first and then decreases with the increase of mean stress on account of the interaction between dislocation slipping and twinning/detwinning mechanisms.Comparing the fatigue lives obtained in the asymmetric stress-controlled and symmetrical strain-controlled cycle tests,it is seen that the ratchetting deformation causes an additional damage,and then leads to a shortening of fatigue life. 展开更多
关键词 Magnesium alloy RATCHETTING low-cycle fatigue Mean stress Stress amplitude Stress rate
下载PDF
Methodology to Evaluate Fatigue Damage of High-Speed Train Welded Bogie Frames Based on On-Track Dynamic Stress Test Data 被引量:5
15
作者 Guangxue Yang Meng Wang +1 位作者 Qiang Li Ran Ding 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期181-188,共8页
The current method of estimating the fatigue life of railway structures is to calculating the equivalent stress amplitude based on the measured stress data. However, the random of the measured data is not considered. ... The current method of estimating the fatigue life of railway structures is to calculating the equivalent stress amplitude based on the measured stress data. However, the random of the measured data is not considered. In this paper, a new method was established to compute the equivalent stress amplitude to evaluate the fatigue damage based on the measurable randomness, since the equivalent stress is the key parameter for assessment of structure fatigue life and load derivation. The equivalent stress amplitude of a high-speed train welded bogie frame was found to obey normal distribution under uniform operation route that verified by on-track dynamic stress data, and the proposed model is, in effect, an improved version of the mathematical model used to calculate the equivalent stress amplitude. The data of a long-term, on-track dynamic stress test program was analyzed to find that the normal distribution parameters of equivalent stress amplitude values differ across different operation route. Thus, the fatigue damage of the high-speed train welded bogie frame can be evaluated by the proposed method if the running schedule of the train is known a priori. The results also showed that the equivalent stress amplitude of the region connected to the power system is more random than in other regions of the bogie frame. 展开更多
关键词 fatigue damage evaluation Equivalent STRESS amplitude On-track dynamic STRESS test Welded BOGIE frame of high-speed TRAIN
下载PDF
Fatigue damage evaluation by metal magnetic memory testing 被引量:5
16
作者 王慧鹏 董丽虹 +1 位作者 董世运 徐滨士 《Journal of Central South University》 SCIE EI CAS 2014年第1期65-70,共6页
Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of... Tension-compression fatigue test was performed on 0.45% C steel specimens.Normal and tangential components of magnetic memory testing signals,Hp(y) and Hp(x) signals,with their characteristics,K of Hp(y) and Hp(x)M of Hp(x),throughout the fatigue process were presented and analyzed.Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading; Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles,both Hp(y) and Hp(x) curves were stable after that,the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation.Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure.The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue.In initial and crack developing stages,the characteristics increased significantly due to dislocations increase and crack propagation,respectively.In stable stage,the characteristics remained constant as a result of dislocation blocking,K value ranged from 20 to 30 A/(m·mm)-1,and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work.After failure,both abnormal peaks of Hp(y) and peak of Hp(x) reversed,K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m.The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue,so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing(MMMT). 展开更多
关键词 metal magnetic memory testing MMMT signal tension-compression fatigue test feature extraction
下载PDF
In-Situ Test on Fatigue Characteristics of Top-Mounted Dividable Pile-Board Subgrade for High-Speed Railway 被引量:5
17
作者 苏谦 白皓 +1 位作者 王迅 蒋浩然 《Journal of Southwest Jiaotong University(English Edition)》 2010年第1期8-12,共5页
To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at differen... To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span. 展开更多
关键词 High-speed railway Top-mounted dividable pile-board structure In-situ test Forced vibration test fatigue characteristics
下载PDF
Rolling Fatigue Test of Large-Sized UHPC Member for Cable Stayed Bridge 被引量:2
18
作者 Jeong-Rae Cho Young Jin Kim +2 位作者 Jong Sup Park Eun Suk Choi Won Jong Chin 《Engineering(科研)》 2012年第10期646-654,共9页
Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Co... Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied. 展开更多
关键词 UHPC CABLE Stayed BRIDGE ROLLING fatigue test Large-Sized UHPC MEMBER
下载PDF
Changes in reaction time, coefficient of variance of reaction time, and autonomic nerve function in the mental fatigue state caused by long-term computerized Kraepelin test workload in healthy volunteers 被引量:1
19
作者 Daisuke Kuratsune Seiki Tajima +10 位作者 Junichi Koizumi Kouzi Yamaguti Tetsuya Sasabe Kei Mizuno Masaaki Tanaka Naoko Okawa Hideki Mito Hirokazu Tsubone Yasuyoshi Watanabe Masayasu Inoue Hirohiko Kuratsune 《World Journal of Neuroscience》 2012年第2期113-118,共6页
Fatigue is a common sense caused by crushing labor, stressful social events and various illnesses. It is usually judged by their subjective symptoms, but it should be evaluated in an objective perspective. Here we sho... Fatigue is a common sense caused by crushing labor, stressful social events and various illnesses. It is usually judged by their subjective symptoms, but it should be evaluated in an objective perspective. Here we show that the decrease of working efficiency and sympathetic hyperactivity are associated with mental fatigue state caused by prolonged mental workload. Recently we made a new mental fatigue model of healthy volunteers caused by long-term computerized Kraepelin test (CKT) workload. CKT is our new software for automatically checking the calculation capability, with which it is easy to determine the reaction time (RT), coefficient of variance of reaction time (CV), and accuracy of the answers (AC) during tasks. We put 24 healthy volunteers into the fatigue state by subjecting them to 120 minutes’ CKT workload, and then studied the changes in fatigue sensation, RT, CV, and AC before and after the CKT workload. The fatigue sensation, RT, and CV were clearly increased by the fatigue-inducing task and recovered during the resting period. We also studied the changes in autonomic nerve activity by using heart rate variability analysis. The low/high frequency component ratio (LF/HF) was signifi-cantly increased by the fatigue-inducing task and decreased by resting, suggesting that mental stress causes a relatively sympathetic nerve activity-dominant state. Therefore, our new fatigue model involving a long-term CKT workload is a good mental fatigue model to provide much information about the fatigue state simultane-ously, and the increase of RT, CV, and proportion of sympathetic activity (LF/HF) are associated with mental fatigue state. These might be useful objective biomarkers or evaluating a mental fatigue state. 展开更多
关键词 fatigue COMPUTERIZED Kraepelin test Reaction Time Accuracy of the ANSWERS AUTONOMIC NERVE Activity
下载PDF
Application of acoustic emission (AE) technique in crack monitor during fatigue test of pump rods 被引量:3
20
作者 XIA Yong-fa LI Hai-ling 《材料与冶金学报》 CAS 2007年第1期60-63,共4页
关键词 水泵杆 机械疲劳 声音散射法 裂缝 监测
下载PDF
上一页 1 2 211 下一页 到第
使用帮助 返回顶部