期刊文献+
共找到521,219篇文章
< 1 2 250 >
每页显示 20 50 100
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
1
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Efficacy of hepatic arterial infusion chemotherapy and its combination strategies for advanced hepatocellular carcinoma:A network meta-analysis 被引量:2
2
作者 Shun-An Zhou Qing-Mei Zhou +7 位作者 Lei Wu Zhi-Hong Chen Fan Wu Zhen-Rong Chen Lian-Qun Xu Bi-LingGan Hao-Sheng Jin Ning Shi 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第8期3672-3686,共15页
BACKGROUND With the rapid progress of systematic therapy for hepatocellular carcinoma(HCC),therapeutic strategies combining hepatic arterial infusion chemotherapy(HAIC)with systematic therapy arised increasing concent... BACKGROUND With the rapid progress of systematic therapy for hepatocellular carcinoma(HCC),therapeutic strategies combining hepatic arterial infusion chemotherapy(HAIC)with systematic therapy arised increasing concentrations.However,there have been no systematic review comparing HAIC and its combination strategies in the first-line treatment for advanced HCC.AIM To investigate the efficacy and safety of HAIC and its combination therapies for advanced HCC.METHODS A network meta-analysis was performed by including 9 randomized controlled trails and 35 cohort studies to carry out our study.The outcomes of interest comprised overall survival(OS),progression-free survival(PFS),tumor response and adverse events.Hazard ratios(HR)and odds ratios(OR)with a 95% confidence interval(CI)were calculated and agents were ranked based on their ranking probability.RESULTS HAIC outperformed Sorafenib(HR=0.55,95%CI:0.42-0.72;HR=0.51,95%CI:0.33-0.78;OR=2.86,95%CI:1.37-5.98;OR=5.45,95%CI:3.57-8.30;OR=7.15,95%CI:4.06-12.58;OR=2.89,95%CI:1.99-4.19;OR=0.48,95%CI:0.25-0.92,respectively)and transarterial chemoembolization(TACE)(HR=0.50,95%CI:0.33-0.75;HR=0.62,95%CI:0.39-0.98;OR=3.08,95%CI:1.36-6.98;OR=2.07,95%CI:1.54-2.80;OR=3.16,95%CI:1.71-5.85;OR=2.67,95%CI:1.59-4.50;OR=0.16,95%CI:0.05-0.54,respectively)in terms of efficacy and safety.HAIC+lenvatinib+ablation,HAIC+ablation,HAIC+anti-programmed cell death 1(PD-1),and HAIC+radiotherapy had the higher likelihood of providing better OS and PFS outcomes compared to HAIC alone.HAIC+TACE+S-1,HAIC+lenvatinib,HAIC+PD-1,HAIC+TACE,and HAIC+sorafenib had the higher likelihood of providing better partial response and objective response rate outcomes compared to HAIC.HAIC+PD-1,HAIC+TACE+S-1 and HAIC+TACE had the higher likelihood of providing better complete response and disease control rate outcomes compared to HAIC alone.CONCLUSION HAIC proved more effective and safer than sorafenib and TACE.Furthermore,combined with other interventions,HAIC showed improved efficacy over HAIC monotherapy according to the treatment ranking analysis. 展开更多
关键词 Hepatic arterial infusion chemotherapy Hepatocellular carcinoma network meta-analysis Interventional therapy Systemic treatment
下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:1
3
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 Physics-informed neural networks(PINNs) MULTI-SCALE Fluid dynamics Boundary layer
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
4
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
Attention-based network embedding with higher-order weights and node attributes
5
作者 Xian Mo Binyuan Wan +2 位作者 Rui Tang Junkai Ding Guangdi Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期440-451,共12页
Network embedding aspires to learn a low-dimensional vector of each node in networks,which can apply to diverse data mining tasks.In real-life,many networks include rich attributes and temporal information.However,mos... Network embedding aspires to learn a low-dimensional vector of each node in networks,which can apply to diverse data mining tasks.In real-life,many networks include rich attributes and temporal information.However,most existing embedding approaches ignore either temporal information or network attributes.A self-attention based architecture using higher-order weights and node attributes for both static and temporal attributed network embedding is presented in this article.A random walk sampling algorithm based on higher-order weights and node attributes to capture network topological features is presented.For static attributed networks,the algorithm incorporates first-order to k-order weights,and node attribute similarities into one weighted graph to preserve topological features of networks.For temporal attribute networks,the algorithm incorporates previous snapshots of networks containing first-order to k-order weights,and nodes attribute similarities into one weighted graph.In addition,the algorithm utilises a damping factor to ensure that the more recent snapshots allocate a greater weight.Attribute features are then incorporated into topological features.Next,the authors adopt the most advanced architecture,Self-Attention Networks,to learn node representations.Experimental results on node classification of static attributed networks and link prediction of temporal attributed networks reveal that our proposed approach is competitive against diverse state-of-the-art baseline approaches. 展开更多
关键词 data mining deep neural networks social network
下载PDF
Multi-layer network embedding on scc-based network with motif
6
作者 Lu Sun Xiaona Li +4 位作者 Mingyue Zhang Liangtian Wan Yun Lin Xianpeng Wang Gang Xu 《Digital Communications and Networks》 SCIE CSCD 2024年第3期546-556,共11页
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent... Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network. 展开更多
关键词 Semantic communication and computing Multi-layer network Graph neural network MOTIF
下载PDF
Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks 被引量:1
7
作者 Asad Raza Shahzad Memon +1 位作者 Muhammad Ali Nizamani Mahmood Hussain Shah 《Intelligent Automation & Soft Computing》 2024年第3期545-566,共22页
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl... Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments. 展开更多
关键词 Industrial internet of things smart industrial environment cyber-attacks convolutional neural network ensemble learning
下载PDF
A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals
8
作者 Jiajie Shen Yan Wang Dongxu Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4349-4370,共22页
Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices.Previous work have achieved impressive performance in classifying stead... Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices.Previous work have achieved impressive performance in classifying steady locomotion states.However,it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states.Due to the similarities between the information of the transitions and their adjacent steady states.Furthermore,most of these methods rely solely on data and overlook the objective laws between physical activities,resulting in lower accuracy,particularly when encountering complex locomotion modes such as transitions.To address the existing deficiencies,we propose the locomotion rule embedding long short-term memory(LSTM)network with Attention(LREAL)for human locomotor intent classification,with a particular focus on transitions,using data from fewer sensors(two inertial measurement units and four goniometers).The LREAL network consists of two levels:One responsible for distinguishing between steady states and transitions,and the other for the accurate identification of locomotor intent.Each classifier in these levels is composed of multiple-LSTM layers and an attention mechanism.To introduce real-world motion rules and apply constraints to the network,a prior knowledge was added to the network via a rule-modulating block.The method was tested on the ENABL3S dataset,which contains continuous locomotion date for seven steady and twelve transitions states.Experimental results showed that the LREAL network could recognize locomotor intents with an average accuracy of 99.03%and 96.52%for the steady and transitions states,respectively.It is worth noting that the LREAL network accuracy for transition-state recognition improved by 0.18%compared to other state-of-the-art network,while using data from fewer sensors. 展开更多
关键词 Lower-limb prosthetics deep neural networks motion classification
下载PDF
Anion exchange membranes with a semi-interpenetrating polymer network using 1,6-dibromohexane as bifunctional crosslinker
9
作者 Aijie Li Zhanliang Wang +6 位作者 Zhihao Si Lu Lu Peipei Huang Jinhong Liu Songyuan Yao Peiyong Qin Xinmiao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期199-208,共10页
An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of A... An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs. 展开更多
关键词 Anion exchange membrane Polyvinylidene difluoride ELECTRODIALYSIS Semi-interpenetrating polymer networks
下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
10
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 Heat exchanger network Reinforcement learning Mathematical programming Process design
下载PDF
A Fractional-Order Ultra-Local Model-Based Adaptive Neural Network Sliding Mode Control of n-DOF Upper-Limb Exoskeleton With Input Deadzone
11
作者 Dingxin He HaoPing Wang +1 位作者 Yang Tian Yida Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期760-781,共22页
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co... This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method. 展开更多
关键词 Adaptive control input deadzone model-free control n-DOF upper-limb exoskeleton neural network
下载PDF
Neural Network Robust Control Based on Computed Torque for Lower Limb Exoskeleton
12
作者 Yibo Han Hongtao Ma +6 位作者 Yapeng Wang Di Shi Yanggang Feng Xianzhong Li Yanjun Shi Xilun Ding Wuxiang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期83-99,共17页
The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the ... The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness. 展开更多
关键词 Lower limb exoskeleton Model compensation RBF neural network Computed torque method
下载PDF
Learning to Branch in Combinatorial Optimization With Graph Pointer Networks
13
作者 Rui Wang Zhiming Zhou +4 位作者 Kaiwen Li Tao Zhang Ling Wang Xin Xu Xiangke Liao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期157-169,共13页
Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well wi... Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with complex problems.Given the frequent need to solve varied combinatorial optimization problems, leveraging statistical learning to auto-tune B&B algorithms for specific problem classes becomes attractive. This paper proposes a graph pointer network model to learn the branch rules. Graph features, global features and historical features are designated to represent the solver state. The graph neural network processes graph features, while the pointer mechanism assimilates the global and historical features to finally determine the variable on which to branch. The model is trained to imitate the expert strong branching rule by a tailored top-k Kullback-Leibler divergence loss function. Experiments on a series of benchmark problems demonstrate that the proposed approach significantly outperforms the widely used expert-designed branching rules. It also outperforms state-of-the-art machine-learning-based branch-and-bound methods in terms of solving speed and search tree size on all the test instances. In addition, the model can generalize to unseen instances and scale to larger instances. 展开更多
关键词 Branch-and-bound(B&B) combinatorial optimization deep learning graph neural network imitation learning
下载PDF
TCM-HIN2Vec:A strategy for uncovering biological basis of heart qi deficiency pattern based on network embedding and transcriptomic experiment
14
作者 Lihong Diao Xinyi Fan +5 位作者 Jiang Yu Kai Huang Edouard C.Nice Chao Liu Dong Li Shuzhen Guo 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期264-274,共11页
Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD patt... Objective:To elucidate the biological basis of the heart qi deficiency(HQD)pattern,an in-depth understanding of which is essential for improving clinical herbal therapy.Methods: We predicted and characterized HQD pattern genes using the new strategy,TCM-HIN2Vec,which involves heterogeneous network embedding and transcriptomic experiments.First,a heterogeneous network of traditional Chinese medicine(TCM)patterns was constructed using public databases.Next,we predicted HQD pattern genes using a heterogeneous network-embedding algorithm.We then analyzed the functional characteristics of HQD pattern genes using gene enrichment analysis and examined gene expression levels using RNA-seq.Finally,we identified TCM herbs that demonstrated enriched interactions with HQD pattern genes via herbal enrichment analysis.Results: Our TCM-HIN2Vec strategy revealed that candidate genes associated with HQD pattern were significantly enriched in energy metabolism,signal transduction pathways,and immune processes.Moreover,we found that these candidate genes were significantly differentially expressed in the transcriptional profile of mice model with heart failure with a qi deficiency pattern.Furthermore,herbal enrichment analysis identified TCM herbs that demonstrated enriched interactions with the top 10 candidate genes and could potentially serve as drug candidates for treating HQD.Conclusion: Our results suggested that TCM-HIN2Vec is capable of not only accurately identifying HQD pattern genes,but also deciphering the basis of HQD pattern.Furthermore our finding indicated that TCM-HIN2Vec may be further expanded to develop other patterns,leading to a new approach aimed at elucidating general TCM patterns and developing precision medicine. 展开更多
关键词 Qi deficiency pattern Heart failure Biological basis network embedding Transcriptome
下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
15
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
下载PDF
Neural network study of the nuclear ground-state spin distribution within a random interaction ensemble
16
作者 Deng Liu Alam Noor A +1 位作者 Zhen-Zhen Qin Yang Lei 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期216-227,共12页
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t... The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists. 展开更多
关键词 Neural network Two-body random ensemble Spin distribution of nuclear ground state
下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder
17
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
下载PDF
Network pharmacology combined with molecular docking revealed the potential targets of Coridius chinensis in prostate cancer treatment
18
作者 Mei Zhang Jing Ma +1 位作者 Feng-Yin Zeng Xiao-Hui Hou 《World Journal of Clinical Cases》 SCIE 2024年第27期6094-6104,共11页
BACKGROUND Prostate cancer(PCa)has high morbidity and mortality rates in elderly men.With a history of thousands of years,traditional Chinese medicine derived from insects could be an important source for developing c... BACKGROUND Prostate cancer(PCa)has high morbidity and mortality rates in elderly men.With a history of thousands of years,traditional Chinese medicine derived from insects could be an important source for developing cancer-targeted drugs to prevent tumorigenesis,enhance therapeutic effects,and reduce the risk of recurrence and metastasis.Multiple studies have shown that Coridius chinensis(Cc)has anticancer effects.AIM To elucidate the mechanism of action of Cc against PCa via network pharma-cology and molecular docking.METHODS Potential targets for Cc and PCa were predicted using ChemDraw 19.0 software,the PharmMapper database and the GeneCards database.Then,the STRING database was used to construct the protein–protein interaction network.Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment and molecular docking analyses were subsequently conducted to identify the key targets,active ingredients and pathways involved.RESULTS GO and KEGG analyses indicated that the PI3K-Akt signalling pathway was the critical pathway(P value<1.0×10-8).Multiple targeting ingredients that can affect multiple pathways in PCa have been identified in Cc.Seven active compounds(asponguanosines A,asponguanine B,asponguanine C,aspong-pyrazine A,N-acetyldopamine,aspongadenine B and aspongpyrazine B)were selected for molecular docking with 9 potential targets,and the results revealed that aspongpyrazine A and asponguanosine A are the main components by which Cc affects PCa(affinity<-5 kcal/mol,hydrogen bonding),but more studies are needed.CONCLUSION We used network pharmacology to predict the bioactive components and important targets of Cc for the treatment of PCa,supporting the development of Cc as a natural anticancer agent. 展开更多
关键词 Coridius chinensis Molecular docking network pharmacology Prostate cancer Traditional Chinese medicine
下载PDF
Predicting Users’ Latent Suicidal Risk in Social Media: An Ensemble Model Based on Social Network Relationships
19
作者 Xiuyang Meng Chunling Wang +3 位作者 Jingran Yang Mairui Li Yue Zhang Luo Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4259-4281,共23页
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ... Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences. 展开更多
关键词 Suicide risk prediction social media social network relationships Weibo Tree Hole deep learning
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
20
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部