Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.展开更多
Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manife...Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.展开更多
This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
Timely identification and treatment of medical conditions could facilitate faster recovery and better health.Existing systems address this issue using custom-built sensors,which are invasive and difficult to generaliz...Timely identification and treatment of medical conditions could facilitate faster recovery and better health.Existing systems address this issue using custom-built sensors,which are invasive and difficult to generalize.A low-complexity scalable process is proposed to detect and identify medical conditions from 2D skeletal movements on video feed data.Minimal set of features relevant to distinguish medical conditions:AMF,PVF and GDF are derived from skeletal data on sampled frames across the entire action.The AMF(angular motion features)are derived to capture the angular motion of limbs during a specific action.The relative position of joints is represented by PVF(positional variation features).GDF(global displacement features)identifies the direction of overall skeletal movement.The discriminative capability of these features is illustrated by their variance across time for different actions.The classification of medical conditions is approached in two stages.In the first stage,a low-complexity binary LSTM classifier is trained to distinguish visual medical conditions from general human actions.As part of stage 2,a multi-class LSTM classifier is trained to identify the exact medical condition from a given set of visually interpretable medical conditions.The proposed features are extracted from the 2D skeletal data of NTU RGB+D and then used to train the binary and multi-class LSTM classifiers.The binary and multi-class classifiers observed average F1 scores of 77%and 73%,respectively,while the overall system produced an average F1 score of 69%and a weighted average F1 score of 80%.The multi-class classifier is found to utilize 10 to 100 times fewer parameters than existing 2D CNN-based models while producing similar levels of accuracy.展开更多
Background:To systematically summarize and categorize the Chinese herbal medicine in the domestic traditional Chinese medicine(TCM)literature on type 2 diabetes mellitus(T2DM),in this paper,we mine traditional Chinese...Background:To systematically summarize and categorize the Chinese herbal medicine in the domestic traditional Chinese medicine(TCM)literature on type 2 diabetes mellitus(T2DM),in this paper,we mine traditional Chinese medicine data for relationships and provide for future practitioners and researchers.Methods:Taking randomized controlled trials on the treatment of T2DM in TCM as the research theme,we searched for full-text literature in three major clinical databases,including CNKI,Wan Fang,and VIP,published between 1990 and 2020.We then conducted frequency statistics,cluster analysis,association rules extraction,and principal component analysis based on a corpus of medical academic words extracted from 1116 research articles.Results:The most frequently used is Astragali Radix,and the most commonly used two-herb combination in T2DM treatment consisted of Coptidis Rhizoma and Moutan Cortex.Moutan Cortex,Alismatis Rhizoma,and Dioscoreae Rhizoma were the most frequently used three-herb combination.We found a“lung”and“liver”and“kidney”model and confirmed the value of classical meridian tropism theory and pattern identification.The treatment is mainly to fill deficiency and clear heat and consider water infiltration,dampness,blood circulation,and silt.Conclusion:This study provides an in-depth perspective on the TCM medication rules for T2DM and offers practitioners and researchers valuable information about the current status and frontier trends of TCM research on T2DM in terms of diagnosis and treatment.展开更多
The development of technologies such as big data and blockchain has brought convenience to life,but at the same time,privacy and security issues are becoming more and more prominent.The K-anonymity algorithm is an eff...The development of technologies such as big data and blockchain has brought convenience to life,but at the same time,privacy and security issues are becoming more and more prominent.The K-anonymity algorithm is an effective and low computational complexity privacy-preserving algorithm that can safeguard users’privacy by anonymizing big data.However,the algorithm currently suffers from the problem of focusing only on improving user privacy while ignoring data availability.In addition,ignoring the impact of quasi-identified attributes on sensitive attributes causes the usability of the processed data on statistical analysis to be reduced.Based on this,we propose a new K-anonymity algorithm to solve the privacy security problem in the context of big data,while guaranteeing improved data usability.Specifically,we construct a new information loss function based on the information quantity theory.Considering that different quasi-identification attributes have different impacts on sensitive attributes,we set weights for each quasi-identification attribute when designing the information loss function.In addition,to reduce information loss,we improve K-anonymity in two ways.First,we make the loss of information smaller than in the original table while guaranteeing privacy based on common artificial intelligence algorithms,i.e.,greedy algorithm and 2-means clustering algorithm.In addition,we improve the 2-means clustering algorithm by designing a mean-center method to select the initial center of mass.Meanwhile,we design the K-anonymity algorithm of this scheme based on the constructed information loss function,the improved 2-means clustering algorithm,and the greedy algorithm,which reduces the information loss.Finally,we experimentally demonstrate the effectiveness of the algorithm in improving the effect of 2-means clustering and reducing information loss.展开更多
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.
基金supported by a grant from Hubei Key Laboratory of Diabetes and Angiopathy Program of Hubei University of Science and Technology(2020XZ10)Project of Education Commission of Hubei Province(B2022192).
文摘Background:Erzhu Erchen decoction(EZECD),which is based on Erchen decoction and enhanced with Atractylodes lancea and Atractylodes macrocephala,is widely used for the treatment of dampness and heat(The clinical manifestations of Western medicine include thirst,inability to drink more,diarrhea,yellow urine,red tongue,et al.)internalized disease.Nevertheless,the mechanism of EZECD on damp-heat internalized Type 2 diabetes(T2D)remains unknown.We employed data mining,pharmacology databases and experimental verification to study how EZECD treats damp-heat internalized T2D.Methods:The main compounds or genes of EZECD and damp-heat internalized T2D were obtained from the pharmacology databases.Succeeding,the overlapped targets of EZECD and damp-heat internalized T2D were performed by the Gene Ontology,kyoto encyclopedia of genes and genomes analysis.And the compound-disease targets-pathway network were constructed to obtain the hub compound.Moreover,the hub genes and core related pathways were mined with weighted gene co-expression network analysis based on Gene Expression Omnibus database,the capability of hub compound and genes was valid in AutoDock 1.5.7.Furthermore,and violin plot and gene set enrichment analysis were performed to explore the role of hub genes in damp-heat internalized T2D.Finally,the interactions of hub compound and genes were explored using Comparative Toxicogenomics Database and quantitative polymerase chain reaction.Results:First,herb-compounds-genes-disease network illustrated that the hub compound of EZECD for damp-heat internalized T2D could be quercetin.Consistently,the hub genes were CASP8,CCL2,and AHR according to weighted gene co-expression network analysis.Molecular docking showed that quercetin could bind with the hub genes.Further,gene set enrichment analysis and Gene Ontology represented that CASP8,or CCL2,is negatively involved in insulin secretion response to the TNF or lipopolysaccharide process,and AHR or CCL2 positively regulated lipid and atherosclerosis,and/or including NOD-like receptor signaling pathway,and TNF signaling pathway.Ultimately,the quantitative polymerase chain reaction and western blotting analysis showed that quercetin could down-regulated the mRNA and protein experssion of CASP8,CCL2,and AHR.It was consistent with the results in Comparative Toxicogenomics Database databases.Conclusion:These results demonstrated quercetin could inhibit the expression of CASP8,CCL2,AHR in damp-heat internalized T2D,which improves insulin secretion and inhibits lipid and atherosclerosis,as well as/or including NOD-like receptor signaling pathway,and TNF signaling pathway,suggesting that EZECD may be more effective to treat damp-heat internalized T2D.
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
文摘Timely identification and treatment of medical conditions could facilitate faster recovery and better health.Existing systems address this issue using custom-built sensors,which are invasive and difficult to generalize.A low-complexity scalable process is proposed to detect and identify medical conditions from 2D skeletal movements on video feed data.Minimal set of features relevant to distinguish medical conditions:AMF,PVF and GDF are derived from skeletal data on sampled frames across the entire action.The AMF(angular motion features)are derived to capture the angular motion of limbs during a specific action.The relative position of joints is represented by PVF(positional variation features).GDF(global displacement features)identifies the direction of overall skeletal movement.The discriminative capability of these features is illustrated by their variance across time for different actions.The classification of medical conditions is approached in two stages.In the first stage,a low-complexity binary LSTM classifier is trained to distinguish visual medical conditions from general human actions.As part of stage 2,a multi-class LSTM classifier is trained to identify the exact medical condition from a given set of visually interpretable medical conditions.The proposed features are extracted from the 2D skeletal data of NTU RGB+D and then used to train the binary and multi-class LSTM classifiers.The binary and multi-class classifiers observed average F1 scores of 77%and 73%,respectively,while the overall system produced an average F1 score of 69%and a weighted average F1 score of 80%.The multi-class classifier is found to utilize 10 to 100 times fewer parameters than existing 2D CNN-based models while producing similar levels of accuracy.
基金supported by China’s National Key R&D Program,NO.2019YFC1709801.
文摘Background:To systematically summarize and categorize the Chinese herbal medicine in the domestic traditional Chinese medicine(TCM)literature on type 2 diabetes mellitus(T2DM),in this paper,we mine traditional Chinese medicine data for relationships and provide for future practitioners and researchers.Methods:Taking randomized controlled trials on the treatment of T2DM in TCM as the research theme,we searched for full-text literature in three major clinical databases,including CNKI,Wan Fang,and VIP,published between 1990 and 2020.We then conducted frequency statistics,cluster analysis,association rules extraction,and principal component analysis based on a corpus of medical academic words extracted from 1116 research articles.Results:The most frequently used is Astragali Radix,and the most commonly used two-herb combination in T2DM treatment consisted of Coptidis Rhizoma and Moutan Cortex.Moutan Cortex,Alismatis Rhizoma,and Dioscoreae Rhizoma were the most frequently used three-herb combination.We found a“lung”and“liver”and“kidney”model and confirmed the value of classical meridian tropism theory and pattern identification.The treatment is mainly to fill deficiency and clear heat and consider water infiltration,dampness,blood circulation,and silt.Conclusion:This study provides an in-depth perspective on the TCM medication rules for T2DM and offers practitioners and researchers valuable information about the current status and frontier trends of TCM research on T2DM in terms of diagnosis and treatment.
基金Foundation of National Natural Science Foundation of China(62202118)Scientific and Technological Research Projects from Guizhou Education Department([2023]003)+1 种基金Guizhou Provincial Department of Science and Technology Hundred Levels of Innovative Talents Project(GCC[2023]018)Top Technology Talent Project from Guizhou Education Department([2022]073).
文摘The development of technologies such as big data and blockchain has brought convenience to life,but at the same time,privacy and security issues are becoming more and more prominent.The K-anonymity algorithm is an effective and low computational complexity privacy-preserving algorithm that can safeguard users’privacy by anonymizing big data.However,the algorithm currently suffers from the problem of focusing only on improving user privacy while ignoring data availability.In addition,ignoring the impact of quasi-identified attributes on sensitive attributes causes the usability of the processed data on statistical analysis to be reduced.Based on this,we propose a new K-anonymity algorithm to solve the privacy security problem in the context of big data,while guaranteeing improved data usability.Specifically,we construct a new information loss function based on the information quantity theory.Considering that different quasi-identification attributes have different impacts on sensitive attributes,we set weights for each quasi-identification attribute when designing the information loss function.In addition,to reduce information loss,we improve K-anonymity in two ways.First,we make the loss of information smaller than in the original table while guaranteeing privacy based on common artificial intelligence algorithms,i.e.,greedy algorithm and 2-means clustering algorithm.In addition,we improve the 2-means clustering algorithm by designing a mean-center method to select the initial center of mass.Meanwhile,we design the K-anonymity algorithm of this scheme based on the constructed information loss function,the improved 2-means clustering algorithm,and the greedy algorithm,which reduces the information loss.Finally,we experimentally demonstrate the effectiveness of the algorithm in improving the effect of 2-means clustering and reducing information loss.