In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shieldi...In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shielding structure is proposed.The soft magnetic material is designed to enhance the local magnetic field in the diode region.Moreover,the diode applies a shielding structure which can reduce the radial electric field.From simulation research,it is found that the emission and transmission quality of the electron beam with low magnetic field is greatly improved when loading this diode.Through simulation research,it is verified that the diode can increase the conversion efficiency of the transit-time oscillator(TTO)from 30%to 36.7%.In our experimental study,under the conditions of a diode voltage of 540 kV and a current of 10.5 kA,the output microwave power is 1.51 GW when loading the novel diode and the microwave frequency is 4.27 GHz when an external guiding magnetic field of 0.3 T is applied.The corresponding conversion efficiency is improved from 20.0%to 26.6%,which is 6.6%higher than that of a device loaded with a conventional diode.Our experiments have verified that this novel diode can effectively improve the conversion efficiency of high-power microwave sources operating with low magnetic field,and contribute to the miniaturization and compactness of high-power microwave devices.展开更多
Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hami...Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.展开更多
Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high tempera...Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high temperature applications, since they have large magnetocrystalline anisotropy field (6-30 T), high Curie temperature (720-920℃), and large energy product (〉200 kJ.m-3) at room temperature. However, the highest service temperature of commercial 2:17 type SmCo magnets is only 300℃, and many efforts have been devoted to develop novel high temperature permanent magnets. This review focuses on the development of three kinds of SmCo based magnets: 2:17 type SmCo magnets, nanocrystalline SmCo magnets, and nanocomposite SmCo magnets. The oxidation protection, including alloying and surface modification, of high temperature permanent magnets is discussed as well.展开更多
This paper presents a method to study the vector magnetic properties of magnetic materials under alternating and rotational magnetic field using 2-D vector hybrid hysteresis model.Combining Preisach model and Stoner-W...This paper presents a method to study the vector magnetic properties of magnetic materials under alternating and rotational magnetic field using 2-D vector hybrid hysteresis model.Combining Preisach model and Stoner-Wohlfarth(S-W)model,the vector hybrid hysteresis model is established for magnetic materials.The alternating and rotational hysteresis properties are calculated under different excitation frequency,respectively.And the computed results are compared with the experimental measurement ones.It is shown that the vector model can simulate the alternating and rotational magnetic properties effectively under low magnetization fields and low excitation frequency.展开更多
The μi-T curves of the alloy Fe73.5Cu1 Nb3Si13.5B9 in the amorphous state and in the nanocrys-talline state have been investigated. For comparison, μi-T curves of the other two kinds of typical soft magnetic alloys ...The μi-T curves of the alloy Fe73.5Cu1 Nb3Si13.5B9 in the amorphous state and in the nanocrys-talline state have been investigated. For comparison, μi-T curves of the other two kinds of typical soft magnetic alloys also have been measured. It was found that a sharp Hopkinson peak appeared at the Curie point for each amorphous and crystalline alloy but there was no Hopkinson peak for the nanocrystalline alloy at the Curie point of the residual amorphous phase. This phenomenon has been explained in terms of the characteristic temperature dependence of the effective magnetic anisotropy.展开更多
L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is f...L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is found the L1_(0)-FeNi in annealed samples at 400℃mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 600 C lower than the measured onset temperature of the second stage with a50 C/min heating rate.Annealing at 4000 C after fully crystallization still caused a slight increase of coercivity,which was probably contributed by the limited transformation from other high temperature crystalline phases towards L1_(0)phase,or the removal of B from L1_(0)lattice and improvement of the ordering quality of L1_(0)phase due to the reduced temperature from520℃to 400℃.The first stage of crystallization has hardly direct contribution to L1_(0)-FeNi formation.Ab initio simulations show that the addition of Si or Co in L1_(0)-FeNi has the effect of enhancing the thermal stability of L1_(0)phase without seriously deteriorating its magnetic hardness.The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects.The approaches of synthesizing L1_(0)-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.展开更多
By applying meander-line for electrical loss and magnetic material for magnetic loss,we present a metamaterial absorber which is wide-spaced and dual-band(1.35—2.24 GHz and 10.37—12.37 GHz).The novelty of this study...By applying meander-line for electrical loss and magnetic material for magnetic loss,we present a metamaterial absorber which is wide-spaced and dual-band(1.35—2.24 GHz and 10.37—12.37 GHz).The novelty of this study mainly lies in a combination of two kinds of losses to consume electromagnetic energy,which can get better dual-band absorption.In the electrical loss layer,meander-line structures are printed on both surfaces of the substrate and the structure series with resistors.Considering the need for miniaturization,we connect eight metallic vias with these meander-line areas to form a compact 2.5-dimensional(2.5D)structure.The dimension of the unit cell is miniaturized to be 5.94 mm×5.94 mm,about 0.035λat the center frequency of the lower absorption band.In the magnetic loss layer,the 0.4 mm thick magnetic material is employed on a metallic ground plane.In addition,the complex permittivity and complex permeability of the magnetic material are given.Finally,we fabricate a prototype of the proposed absorber and obtain a measurement result which is in good agreement with the full-wave simulation result.展开更多
This paper presents theoretical computations of magnetic force bearings made of new type hard magnetic materials neodymium iron boron. A set of devices capable of simultaneously measuring magnetic eccentricity, ...This paper presents theoretical computations of magnetic force bearings made of new type hard magnetic materials neodymium iron boron. A set of devices capable of simultaneously measuring magnetic eccentricity, crosswise stiffness and magnetic pulling force is designed.展开更多
The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials ha...The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials have been successfully developed and used in a wide variety of applications. A brief review of R & D activities on amorphous soft magnetic materials in China is given from the beginning to the present in a somewhat chronological order, followed by a brief introduction to their applications on electric and electronic industries. An analysis and a prospect of Chinese market of such amorphous materials are also presented.展开更多
In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux densi...In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.展开更多
An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited cap...An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited capacity and operational plan in workshop level based on the basic data of flow chart are formulated by this model which applied JIT idea and based on customer order demand. Push production is adapted during execution phase combined with process flow cards. The model is helpful to reduce inventory,keep certain flexbility of production and improve continuity and equilibrium of manufacturing process.展开更多
Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the...Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.展开更多
The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti eleme...The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti element in alloys is crucial for phase stability and magnetic properties,and lower Ti content can increase intrinsic magnetic properties but reduce phase stability.In this study,the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm1.1Zr_(0.2)Fe_(9.2)Co_(2.3)Ti_(0.5) quinary-alloy.However,this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain.Then,annealing was carried out to eliminate micro-strain and homogenize microstructure,therefore,remanence and coercivity were significantly improved even the precipitation of a small amount of a-Fe phase which were not conducive to coercivity.The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850℃ for 45 min.After hot pressing,under the action of high temperature and pressure,a small portion of ThMn12 phases in the magnet decompose into Sm-rich phases and a-Fe,while remanence of 4.02 kGs(1 Gs=10^(-4) T),and coercivity of 1.12 kOe(1 Oe=79.5775 A·m^(-1))were still acquired.Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.展开更多
Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_...Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.展开更多
An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum fr...An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications.展开更多
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61701516)
文摘In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shielding structure is proposed.The soft magnetic material is designed to enhance the local magnetic field in the diode region.Moreover,the diode applies a shielding structure which can reduce the radial electric field.From simulation research,it is found that the emission and transmission quality of the electron beam with low magnetic field is greatly improved when loading this diode.Through simulation research,it is verified that the diode can increase the conversion efficiency of the transit-time oscillator(TTO)from 30%to 36.7%.In our experimental study,under the conditions of a diode voltage of 540 kV and a current of 10.5 kA,the output microwave power is 1.51 GW when loading the novel diode and the microwave frequency is 4.27 GHz when an external guiding magnetic field of 0.3 T is applied.The corresponding conversion efficiency is improved from 20.0%to 26.6%,which is 6.6%higher than that of a device loaded with a conventional diode.Our experiments have verified that this novel diode can effectively improve the conversion efficiency of high-power microwave sources operating with low magnetic field,and contribute to the miniaturization and compactness of high-power microwave devices.
文摘Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.
基金supported by the National Natural Science Foundation of China (Nos. 51071010 and 50925101)the Innovation Foundation of Beihang University for Ph.D. Graduates
文摘Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high temperature applications, since they have large magnetocrystalline anisotropy field (6-30 T), high Curie temperature (720-920℃), and large energy product (〉200 kJ.m-3) at room temperature. However, the highest service temperature of commercial 2:17 type SmCo magnets is only 300℃, and many efforts have been devoted to develop novel high temperature permanent magnets. This review focuses on the development of three kinds of SmCo based magnets: 2:17 type SmCo magnets, nanocrystalline SmCo magnets, and nanocomposite SmCo magnets. The oxidation protection, including alloying and surface modification, of high temperature permanent magnets is discussed as well.
基金This work was supported in part by the National Natural Science Foundation of China(NO.51607157,51777055)the National Key R&D Program of China(NO.2017YFB0903904)+2 种基金the Key Scientific Research Project for Colleges and universities of Henan,China(NO.16A470017)the Hebei Province Science Foundation for Distinguished Young Scholars,Hebei,China(No.E2018202284)the Doctor Foundation of Zhengzhou University of Light Industry,Zhengzhou,Henan,China(NO.2015BSJJ012).
文摘This paper presents a method to study the vector magnetic properties of magnetic materials under alternating and rotational magnetic field using 2-D vector hybrid hysteresis model.Combining Preisach model and Stoner-Wohlfarth(S-W)model,the vector hybrid hysteresis model is established for magnetic materials.The alternating and rotational hysteresis properties are calculated under different excitation frequency,respectively.And the computed results are compared with the experimental measurement ones.It is shown that the vector model can simulate the alternating and rotational magnetic properties effectively under low magnetization fields and low excitation frequency.
基金National Natural Science Foundation of China! under grant No. 59871013.
文摘The μi-T curves of the alloy Fe73.5Cu1 Nb3Si13.5B9 in the amorphous state and in the nanocrys-talline state have been investigated. For comparison, μi-T curves of the other two kinds of typical soft magnetic alloys also have been measured. It was found that a sharp Hopkinson peak appeared at the Curie point for each amorphous and crystalline alloy but there was no Hopkinson peak for the nanocrystalline alloy at the Curie point of the residual amorphous phase. This phenomenon has been explained in terms of the characteristic temperature dependence of the effective magnetic anisotropy.
基金supported by the National Natural Science Foundation of China(Grant Nos.51971179 and 51971180)the Natural Science Foundation of Chongqing,China(Grant No.cstc2019jcyj-msxmX0328)+3 种基金Shaanxi Provincial Natural Science Foundation,China(Grant No.2020JM-112)Guangdong Provincial Science and Technology Program,China(Grant No.2019B090905009)the Fundamental Research Funds for the Central Universities of China(Grant No.D5000210731)Shaanxi Provincial Key R&D Program,China(Grant No.2021KWZ-13)。
文摘L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is found the L1_(0)-FeNi in annealed samples at 400℃mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 600 C lower than the measured onset temperature of the second stage with a50 C/min heating rate.Annealing at 4000 C after fully crystallization still caused a slight increase of coercivity,which was probably contributed by the limited transformation from other high temperature crystalline phases towards L1_(0)phase,or the removal of B from L1_(0)lattice and improvement of the ordering quality of L1_(0)phase due to the reduced temperature from520℃to 400℃.The first stage of crystallization has hardly direct contribution to L1_(0)-FeNi formation.Ab initio simulations show that the addition of Si or Co in L1_(0)-FeNi has the effect of enhancing the thermal stability of L1_(0)phase without seriously deteriorating its magnetic hardness.The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects.The approaches of synthesizing L1_(0)-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail.
文摘By applying meander-line for electrical loss and magnetic material for magnetic loss,we present a metamaterial absorber which is wide-spaced and dual-band(1.35—2.24 GHz and 10.37—12.37 GHz).The novelty of this study mainly lies in a combination of two kinds of losses to consume electromagnetic energy,which can get better dual-band absorption.In the electrical loss layer,meander-line structures are printed on both surfaces of the substrate and the structure series with resistors.Considering the need for miniaturization,we connect eight metallic vias with these meander-line areas to form a compact 2.5-dimensional(2.5D)structure.The dimension of the unit cell is miniaturized to be 5.94 mm×5.94 mm,about 0.035λat the center frequency of the lower absorption band.In the magnetic loss layer,the 0.4 mm thick magnetic material is employed on a metallic ground plane.In addition,the complex permittivity and complex permeability of the magnetic material are given.Finally,we fabricate a prototype of the proposed absorber and obtain a measurement result which is in good agreement with the full-wave simulation result.
文摘This paper presents theoretical computations of magnetic force bearings made of new type hard magnetic materials neodymium iron boron. A set of devices capable of simultaneously measuring magnetic eccentricity, crosswise stiffness and magnetic pulling force is designed.
文摘The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials have been successfully developed and used in a wide variety of applications. A brief review of R & D activities on amorphous soft magnetic materials in China is given from the beginning to the present in a somewhat chronological order, followed by a brief introduction to their applications on electric and electronic industries. An analysis and a prospect of Chinese market of such amorphous materials are also presented.
文摘In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.
基金supported by Ministry of Education Social Science and Humanities Fund(12YJA630187)SHANNXI Social Science Fund(10Q067)High Education Research Fund of Northwestern Polytechnical University(2014)
文摘An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited capacity and operational plan in workshop level based on the basic data of flow chart are formulated by this model which applied JIT idea and based on customer order demand. Push production is adapted during execution phase combined with process flow cards. The model is helpful to reduce inventory,keep certain flexbility of production and improve continuity and equilibrium of manufacturing process.
基金Project supported by the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0391)。
文摘Based on the force-heat equivalence energy density principle,a theoretical model for magnetic metallic materials is developed,which characterizes the temperature-dependent magnetic anisotropy energy by considering the equivalent relationship between magnetic anisotropy energy and heat energy;then the relationship between the magnetic anisotropy constant and saturation magnetization is considered.Finally,we formulate a temperature-dependent model for saturation magnetization,revealing the inherent relationship between temperature and saturation magnetization.Our model predicts the saturation magnetization for nine different magnetic metallic materials at different temperatures,exhibiting satisfactory agreement with experimental data.Additionally,the experimental data used as reference points are at or near room temperature.Compared to other phenomenological theoretical models,this model is considerably more accessible than the data required at 0 K.The index included in our model is set to a constant value,which is equal to 10/3 for materials other than Fe,Co,and Ni.For transition metals(Fe,Co,and Ni in this paper),the index is 6 in the range of 0 K to 0.65T_(cr)(T_(cr) is the critical temperature),and 3 in the range of 0.65T_(cr) to T_(cr),unlike other models where the adjustable parameters vary according to each material.In addition,our model provides a new way to design and evaluate magnetic metallic materials with superior magnetic properties over a wide range of temperatures.
基金the National Key Research and De-velopment Program of China(Grant No.2021YFB3500300)the National Natural Science Foundation of China(Grant No.51931007)the Program of Top Disciplines Construc-tion in Beijing(Grant No.PXM2019014204500031).
文摘The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti element in alloys is crucial for phase stability and magnetic properties,and lower Ti content can increase intrinsic magnetic properties but reduce phase stability.In this study,the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm1.1Zr_(0.2)Fe_(9.2)Co_(2.3)Ti_(0.5) quinary-alloy.However,this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain.Then,annealing was carried out to eliminate micro-strain and homogenize microstructure,therefore,remanence and coercivity were significantly improved even the precipitation of a small amount of a-Fe phase which were not conducive to coercivity.The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850℃ for 45 min.After hot pressing,under the action of high temperature and pressure,a small portion of ThMn12 phases in the magnet decompose into Sm-rich phases and a-Fe,while remanence of 4.02 kGs(1 Gs=10^(-4) T),and coercivity of 1.12 kOe(1 Oe=79.5775 A·m^(-1))were still acquired.Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52371203 and 52271192)the Ministry of Science and Technology of China(Grant No.2021YFB3501201)。
文摘Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.
文摘An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications.
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.