期刊文献+
共找到704篇文章
< 1 2 36 >
每页显示 20 50 100
Evaluation of the Reliability of a System: Approach by Monte Carlo Simulation and Application
1
作者 Aslain Brisco Ngnassi Djami Jean Bosco Samon +4 位作者 Boukar Ousman Ulrich Ngnassi Nguelcheu Wolfgang Nzié Guy Edgar Ntamack Bienvenu Kenmeugne 《Open Journal of Applied Sciences》 2024年第3期721-739,共19页
The objective of this paper is to evaluate the reliability of a system in its different states (absence of failures, partial failure and total failure) and to propose actions to improve this reliability by an approach... The objective of this paper is to evaluate the reliability of a system in its different states (absence of failures, partial failure and total failure) and to propose actions to improve this reliability by an approach based on Monte Carlo simulation. It consists of a probabilistic evaluation based on Markov Chains. In order to achieve this goal, the functionalities of Markov Chains and Monte Carlo simulation steps are deployed. The application is made on a production system. . 展开更多
关键词 EVALUATION RELIABILITY monte carlo markov chain
下载PDF
多重填补法Markov Chain Monte Carlo模型在有缺失值的妇幼卫生纵向数据中的应用 被引量:7
2
作者 茅群霞 李晓松 《四川大学学报(医学版)》 CAS CSCD 北大核心 2005年第3期422-425,共4页
目的 针对妇幼卫生纵向数据的任意缺失模式,采用多重填补方法进行填补,探求最佳填补结果,以便对数据作进一步分析与研究。方法 运用SAS9.0 ,采用多重填补方法Markov China Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。... 目的 针对妇幼卫生纵向数据的任意缺失模式,采用多重填补方法进行填补,探求最佳填补结果,以便对数据作进一步分析与研究。方法 运用SAS9.0 ,采用多重填补方法Markov China Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果 填补5次所得结果最优。结论 多重填补方法可以处理有缺失数据资料中的许多普遍问题,可提高统计效率,尤其是MCMC模型在处理复杂的缺失数据上,优势明显。 展开更多
关键词 多重填补法 markov chain monte carlo 缺失值 妇幼卫生
下载PDF
基于Markov Chain Monte Carlo模型对医院调查资料中缺失数据的多重估算 被引量:3
3
作者 李树威 钟晓妮 《中国卫生统计》 CSCD 北大核心 2013年第6期837-841,共5页
目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算... 目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算法的优势。结果数据服从多元正态分布与随机缺失,采用MCMC法填补10次所得的结果最佳。结论多重估算既可反映缺失数据的不确定性,又可充分利用现有资料的信息、提高统计效率、对模型的估计结果更加可信,是处理缺失数据的有效方法。 展开更多
关键词 缺失数据 markov chain monte carlo 多重估算 医院调查资料
下载PDF
Bayesian Markov chain Monte Carlo inversion for anisotropy of PP-and PS-wave in weakly anisotropic and heterogeneous media 被引量:4
4
作者 Xinpeng Pan Guangzhi Zhang Xingyao Yin 《Earthquake Science》 CSCD 2017年第1期33-46,共14页
A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-... A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-induced HTI anisotropy can be characterized by the weakly anisotropic parameters introduced by Thomsen. The seismic scattering theory can be utilized for the inversion for the anisotropic parameters in weakly aniso- tropic and heterogeneous HTI media. Based on the seismic scattering theory, we first derived the linearized PP- and PS-wave reflection coefficients in terms of P- and S-wave impedances, density as well as three anisotropic parameters in HTI media. Then, we proposed a novel Bayesian Mar- kov chain Monte Carlo inversion method of PP- and PS- wave for six elastic and anisotropic parameters directly. Tests on synthetic azimuthal seismic data contaminated by random errors demonstrated that this method appears more accurate, anti-noise and stable owing to the usage of the constrained PS-wave compared with the standards inver- sion scheme taking only the PP-wave into account. 展开更多
关键词 Crack-induced anisotropy Seismic scattering theory HTI media PP- and PS-wave - Bayesian markov chain monte carlo inversion
下载PDF
SEMI-BLIND CHANNEL ESTIMATION OF MULTIPLE-INPUT/MULTIPLE-OUTPUT SYSTEMS BASED ON MARKOV CHAIN MONTE CARLO METHODS 被引量:1
5
作者 JiangWei XiangHaige 《Journal of Electronics(China)》 2004年第3期184-190,共7页
This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t... This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness. 展开更多
关键词 Multiple-Input/Multiple-Output (MIMO) system Channel estimation markov chain monte carlo (mcmc) method
下载PDF
On Finding the Smallest Generalized Eigenpair Using Markov Chain Monte Carlo Algorithm
6
作者 Farshid Mehrdoust 《Applied Mathematics》 2012年第6期594-596,共3页
This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method... This paper proposes a new technique based on inverse Markov chain Monte Carlo algorithm for finding the smallest generalized eigenpair of the large scale matrices. Some numerical examples show that the proposed method is efficient. 展开更多
关键词 monte carlo Method markov chain GENERALIZED Eigenpair INVERSE monte carlo ALGORITHM
下载PDF
Potential-Decomposition Strategy in Markov Chain Monte Carlo Sampling Algorithms
7
作者 上官丹骅 包景东 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第11期854-856,共3页
We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in... We introduce the potential-decomposition strategy (PDS), which can be used in Markov chain Monte Carlo sampling algorithms. PDS can be designed to make particles move in a modified potential that favors diffusion in phase space, then, by rejecting some trial samples, the target distributions can be sampled in an unbiased manner. Furthermore, if the accepted trial samples are insumcient, they can be recycled as initial states to form more unbiased samples. This strategy can greatly improve efficiency when the original potential has multiple metastable states separated by large barriers. We apply PDS to the 2d Ising model and a double-well potential model with a large barrier, demonstrating in these two representative examples that convergence is accelerated by orders of magnitude. 展开更多
关键词 potential-decomposition strategy markov chain monte carlo sampling algorithms
下载PDF
AN IMPROVED MARKOV CHAIN MONTE CARLO METHOD FOR MIMO ITERATIVE DETECTION AND DECODING
8
作者 Han Xiang Wei Jibo 《Journal of Electronics(China)》 2008年第3期305-310,共6页
Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significa... Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significantly better than their sphere decoding counterparts with relatively low complexity. However, the MCMC simulator is likely to get trapped in a fixed state when the channel SNR is high, thus lots of repetitive samples are observed and the accuracy of A Posteriori Probability (APP) estimation deteriorates. To solve this problem, an improved version of MCMC simulator, named forced-dispersed MCMC algorithm is proposed. Based on the a posteriori variance of each bit, the Gibbs sampler is monitored. Once the trapped state is detected, the sample is dispersed intentionally according to the a posteriori variance. Extensive simulation shows that, compared with the existing solution, the proposed algorithm enables the markov chain to travel more states, which ensures a near-optimal performance. 展开更多
关键词 List Sphere Decoding (LSD) Gibbs sampler markov chain monte carlo (mcmc
下载PDF
Markov Chain Monte Carlo Solution of Laplace’s Equation in Axisymmetric Homogeneous Domain
9
作者 Adebowale E. Shadare Matthew N. O. Sadiku Sarhan M. Musa 《Open Journal of Modelling and Simulation》 2019年第4期203-216,共14页
With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With sev... With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With several competing computational methods in recent times, methods with little or no iterations are generally preferred as they tend to consume less computer memory resources and time. This paper presents the application of simple and efficient Markov Chain Monte Carlo (MCMC) method to the Laplace’s equation in axisymmetric homogeneous domains. Two cases of axisymmetric homogeneous problems are considered. Simulation results for analytical, finite difference and MCMC solutions are reported. The results obtained from the MCMC method agree with analytical and finite difference solutions. However, the MCMC method has the advantage that its implementation is simple and fast. 展开更多
关键词 Laplace’s Equation AXISYMMETRIC Problem INHOMOGENEOUS DIRICHLET Boundary Conditions markov chain monte carlo (mcmc)
下载PDF
利用Monte Carlo技术模拟研究不同缺失值处理方法对完全随机缺失数据的处理效果 被引量:8
10
作者 武瑞仙 邓子兵 +1 位作者 谯治蛟 李晓松 《中国卫生统计》 CSCD 北大核心 2015年第3期534-536,539,共4页
目的 以医疗卫生机构年报资料为数据来源,采用成组删除法、极大似然估计法、多重填补法分别对模拟的完全随机缺失数据集缺失值进行处理,比较不同缺失率下三种方法的缺失处理效果。方法 运用SAS9.3,采用Monte Carlo技术模拟完整数据集及... 目的 以医疗卫生机构年报资料为数据来源,采用成组删除法、极大似然估计法、多重填补法分别对模拟的完全随机缺失数据集缺失值进行处理,比较不同缺失率下三种方法的缺失处理效果。方法 运用SAS9.3,采用Monte Carlo技术模拟完整数据集及不同缺失比例数据集,利用成组删除法、EM算法、MCMC算法对缺失数据进行处理,得到不同处理方法后的参数估计结果,与完整数据集参数估计进行比较。结果 对于完全随机缺失数据,不同缺失率下,成组删除法的准确率均比较好;缺失率小于10%,三种方法处理效果差异不大;缺失率在10%-30%,成组删除法精确度逐渐降低,EM与MCMC准确度与精确度较好,缺失率大于30%,MCMC准确度与精确度相对较好。结论 对于不同缺失率的数据,综合考虑准确度和精确度,采用不同的方法进行处理。 展开更多
关键词 缺失值 EM算法 markov chain monte carlo 模拟 参数
下载PDF
基于Monte Carlo方法的一对二马尔可夫随机格斗模型
11
作者 刁联旺 梁维泰 闫晶晶 《火力与指挥控制》 CSCD 北大核心 2014年第12期112-114,118,共4页
讨论了一对二马尔可夫随机格斗双方获胜概率计算问题。提出了一种新颖的一对二马尔可夫随机格斗任意对抗回合双方获胜概率的计算方法,该方法首先基于Monte Carlo仿真计算各个对抗回合中双方发射次序的概率分布,再利用全概率公式确定马... 讨论了一对二马尔可夫随机格斗双方获胜概率计算问题。提出了一种新颖的一对二马尔可夫随机格斗任意对抗回合双方获胜概率的计算方法,该方法首先基于Monte Carlo仿真计算各个对抗回合中双方发射次序的概率分布,再利用全概率公式确定马尔可夫链的状态转移概率矩阵,从而克服了马尔可夫随机格斗模型往往只能提供无限对抗回合之后格斗双方获胜概率的缺点,为运用马尔可夫随机格斗研究火力运用和弹药分配提供了新途径,并用实例说明了该方法的有效性。 展开更多
关键词 随机格斗 蒙特卡罗方法 马尔可夫链 获胜概率
下载PDF
利用Monte Carlo方法求解线性抛物型问题(英文)
12
作者 洪志敏 闫在在 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期16-25,共10页
提出一种一维线性抛物型偏微分方程的温度分布函数的数值解法,数值算法是基于在空间和时间上采用紧有限差分法(CFD)得到离散化的控制方程进而利用Monte Carlo(MC)随机模拟方法求解所得的方程.通过比较由CFD方法和有限差分法(FD)得到的... 提出一种一维线性抛物型偏微分方程的温度分布函数的数值解法,数值算法是基于在空间和时间上采用紧有限差分法(CFD)得到离散化的控制方程进而利用Monte Carlo(MC)随机模拟方法求解所得的方程.通过比较由CFD方法和有限差分法(FD)得到的数值解与精确解的误差的计算结果说明了所提方法的效率和精度. 展开更多
关键词 monte carlo算法 马尔科夫链 紧有限差分法 抛物型偏微分方程
原文传递
结合贝叶斯-MCMC更新的RC梁抗剪承载力概率模型的可靠度分析
13
作者 俞鑫 张建成 吴刚 《黑龙江工业学院学报(综合版)》 2024年第8期134-140,共7页
为分析钢筋混凝土(RC)梁抗剪承载力,首先,基于国内外100组RC梁抗剪承载力试验数据作为先验信息,结合我国GB 50010-2010规范的抗剪承载力,综合考虑混凝土与箍筋的材料强度、截面尺寸、剪跨比、配箍率等因素的影响,通过贝叶斯-马尔科夫链... 为分析钢筋混凝土(RC)梁抗剪承载力,首先,基于国内外100组RC梁抗剪承载力试验数据作为先验信息,结合我国GB 50010-2010规范的抗剪承载力,综合考虑混凝土与箍筋的材料强度、截面尺寸、剪跨比、配箍率等因素的影响,通过贝叶斯-马尔科夫链蒙特卡洛(MCMC)方法对我国规范模型进行更新与修正;随后,结合Monte Carlo模拟,对所建立的RC梁概率抗剪承载力模型进行可靠度分析,验证了该模型具有较好的计算精度与可靠性。结果表明:概率模型均值与试验值比值K的均值与标准差分别为1.013与0.171,试验值落在概率模型的95%置信区间范围内,且可靠指标分布在4.0左右,说明建立的概率模型具有较好的预测效果与可靠性。 展开更多
关键词 钢筋混凝土梁 抗剪承载力 贝叶斯理论 马尔科夫链蒙特卡洛法 概率模型
下载PDF
随机利率影响下信用风险的Monte-Carlo模拟
14
作者 罗中德 《广西财经学院学报》 2010年第3期82-85,98,共5页
在前人利用马尔科夫链表示公司信用等级的基础上,将信用等级和随机利率引入离散时间的信用风险模型中,从而提出随机利率影响下的新的信用风险模型。就上述模型,对不同初始信用等级、初始盈余以及不同时刻的破产概率进行Monte-Carlo模拟... 在前人利用马尔科夫链表示公司信用等级的基础上,将信用等级和随机利率引入离散时间的信用风险模型中,从而提出随机利率影响下的新的信用风险模型。就上述模型,对不同初始信用等级、初始盈余以及不同时刻的破产概率进行Monte-Carlo模拟,并讨论了相同条件下初始盈余与破产概率、初始信用等级与破产概率以及时间长短与破产概率之间的相互关系。 展开更多
关键词 信用风险模型 信用等级 随机利率 马尔科夫链 montecarlo模拟
下载PDF
基于网络排队模型的Monte Carlo多线程电梯交通流优化设计 被引量:1
15
作者 丁洁 林建素 刘忠 《计算机应用》 CSCD 北大核心 2008年第B06期396-398,共3页
采用Monte Carlo方法对串并联结合的复合电梯系统进行了分析,应用多线程技术模拟电梯交通流模型,并给出相应的算法流程。将该算法应用到电梯配置测评中,通过对多个仿真实例的比较,根据配置结构,给出各实例的相应性能指标。结果表明,以... 采用Monte Carlo方法对串并联结合的复合电梯系统进行了分析,应用多线程技术模拟电梯交通流模型,并给出相应的算法流程。将该算法应用到电梯配置测评中,通过对多个仿真实例的比较,根据配置结构,给出各实例的相应性能指标。结果表明,以本模型为基础建立的电梯配置测评系统可以平衡乘客候梯时间和电梯负载之间的关系,对电梯系统的结构配置给出合理建议,证明了Monte Carlo方法在电梯群控系统测评和优化中的可行性和优越性。 展开更多
关键词 monte carlo方法 电梯交通 马尔科夫随机链 排队论 多线程
下载PDF
地球物理反演的Monte Carlo解法 被引量:1
16
作者 张剑峰 孙焕纯 《石油物探》 EI CSCD 北大核心 1993年第1期53-59,104,共8页
本文研究地球物理反演的Monte Carlo解法.文中引入马尔可夫地层沉积模型,改进随机搜索点的产生方法.提出兼用地质知识和地震记录对搜索点进行检验的新方法,有效地提高了Monte Carlo反演方法的计算效率.本文的反演方法除了由约束条件引... 本文研究地球物理反演的Monte Carlo解法.文中引入马尔可夫地层沉积模型,改进随机搜索点的产生方法.提出兼用地质知识和地震记录对搜索点进行检验的新方法,有效地提高了Monte Carlo反演方法的计算效率.本文的反演方法除了由约束条件引入确定性地质知识外,还通过马尔可夫沉积模型引入了不确定性地质知识,为地质学与地球物理反演的进一步结合开辟了新途径. 展开更多
关键词 地球物理学 反演 montecarlo 解法
下载PDF
基于爬坡方向状态划分的MCMC风电功率序列建模方法 被引量:1
17
作者 崔黎丽 周云海 +2 位作者 石基辰 高怡欣 燕良坤 《现代电子技术》 北大核心 2024年第8期113-120,共8页
由于电网弃风或者灵活性资源不足往往发生在风电大量发电时,故提高风电时间序列模型对大出力状态的建模-抽样精度,有助于后续的电网灵活性资源相关研究。在传统马尔科夫链蒙特卡洛(MCMC)法和持续与波动蒙特卡罗(PV-MC)法基础上,提出一... 由于电网弃风或者灵活性资源不足往往发生在风电大量发电时,故提高风电时间序列模型对大出力状态的建模-抽样精度,有助于后续的电网灵活性资源相关研究。在传统马尔科夫链蒙特卡洛(MCMC)法和持续与波动蒙特卡罗(PV-MC)法基础上,提出一种考虑爬坡方向状态划分的改进方法,以更准确地描述风电出力连续爬坡至大出力状态的过程。该方法以累积分布概率而不是以功率大小均匀划分状态区间,使各个状态区间的样本分布更均匀,提高了风电时间序列模型对大出力状态的建模-抽样精度。通过算例比较所提方法、MCMC法及PV-MC法生成风电功率序列与历史数据的分布特性和统计特性指标,结果表明,所提方法的拟合度较好,且能够有效解决MCMC法和PV-MC法高出力、样本偏少的问题。 展开更多
关键词 风力发电 风电功率时间序列 马尔科夫链蒙特卡洛法 持续与波动蒙特卡洛(PV-MC)法 爬坡方向 状态划分 累积分布概率
下载PDF
基于MCMC的电网安全稳定控制系统动态可靠性评估方法
18
作者 阚骏 董希建 +1 位作者 王敏 夏海峰 《电力工程技术》 北大核心 2024年第3期23-31,共9页
现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MC... 现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。 展开更多
关键词 安全稳定控制系统 时变失效率 动态可靠性 状态检修 马尔可夫链蒙特卡洛(mcmc) 灵敏度
下载PDF
Arriving at estimates of a rate and state fault friction model parameter using Bayesian inference and Markov chain Monte Carlo
19
作者 Saumik Dana Karthik Reddy Lyathakula 《Artificial Intelligence in Geosciences》 2021年第1期171-178,共8页
The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed faul... The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed fault.This makes it incredibly important to construct an inversion framework that provides good estimates of the critical slip distance purely based on the observed ac-celeration at the seismogram.To eventually construct a framework that takes noisy seismogram acceleration data as input and spits out robust estimates of critical slip distance as the output,we first present the performance of the framework for synthetic data.The framework is based on Bayesian inference and Markov chain Monte Carlo methods.The synthetic data is generated by adding noise to the acceleration output of spring-slider-damper idealization of the rate and state model as the forward model. 展开更多
关键词 Fault friction Rate and state model Critical slip distance Bayesian inference markov chain monte carlo
下载PDF
FAST CONVERGENT MONTE CARLO RECEIVER FOR OFDM SYSTEMS
20
作者 WuLili LiaoGuisheng +1 位作者 BaoZheng ShangYong 《Journal of Electronics(China)》 2005年第3期209-219,共11页
The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is propose... The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel es- timation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms. One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver. 展开更多
关键词 Frequency selective fading Orthogonal Frequency Division Multiplexing (OFDM) markov chain monte carlo (mcmc) methods Blind Bayesian detection BIMODALITY
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部