Fucoidan,a sulfate polysaccharide obtained from brown seaweed,has various bioactive properties,including anti-inflammatory,anti-cancer,anti-viral,anti-oxidant,anti-coagulant,anti-thrombotic,anti-angiogenic,and anti-He...Fucoidan,a sulfate polysaccharide obtained from brown seaweed,has various bioactive properties,including anti-inflammatory,anti-cancer,anti-viral,anti-oxidant,anti-coagulant,anti-thrombotic,anti-angiogenic,and anti-Helicobacter pylori properties.However,the effects of low-molecular-weight fucoidan(LMW-F)on melanoma cell lines and three dimensional(3D)cell culture models are not well understood.This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma.Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F.MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells and patientderived melanoma explants in a 3D-printed collagen scaffold.The PTEN/AKT pathway was found to be involved in the anti-melanoma effects of fucoidan.Western blot analysis revealed that LMW-F reduced the phosphorylation of Bcl-2 at Thr 56,which was associated with the prevention of anti-apoptotic activity of cancer cells.Our findings suggested that LMW-F could enhance anti-melanoma chemotherapy and improve the outcomes of patients with melanoma resistance.展开更多
Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interfe...Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.展开更多
Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a...Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.展开更多
BACKGROUND Immunotherapy has revolutionized the treatment of metastatic melanoma,but a significant proportion of patients still experience treatment resistance.Fecal microbiota transplantation(FMT)has emerged as a pot...BACKGROUND Immunotherapy has revolutionized the treatment of metastatic melanoma,but a significant proportion of patients still experience treatment resistance.Fecal microbiota transplantation(FMT)has emerged as a potential strategy to overcome immunotherapy resistance by modulating the gut microbiome.CASE SUMMARY We present a case report of a 57-year-old male with metastatic melanoma refractory to immunotherapy who received FMT in combination with antiprogrammed death-ligand 1(PD-L1)immunotherapy(pembrolizumab).After failing multiple lines of treatment,the patient underwent a single FMT procedure by colonoscopy using fecal material from a female metastatic melanoma donor who successfully responded to immunotherapy.Following FMT,the patient demonstrated a response with decreased subcutaneous disease and subsequently underwent surgery to remove the residual disease.Despite a subsequent recurrence in the small bowel that was resected,the patient remained on pembrolizumab without evidence of melanoma recurrence at the time of writing.CONCLUSION The favorable clinical and long-lasting effect we saw in our patient without significant toxicity suggests that this procedure should be considered in similar patients with immunotherapy refractory melanomas.展开更多
The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is the...The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is then irradiated with low-energy thermal neutrons,generating nuclear fission that produces 7lithium,4helium,andγrays.Simple catechol-borate esters have been rather overlooked as precursors of melanin biosynthesis,and therefore,a proof-of-concept approach for using dopamine-borate(DABO)as a suitable boron-containing candidate for potential BNCT is presented here.DABO can spontaneously oxidize and autopolymerize in vitro,giving a soluble,eumelaninlike brown-black poly-DABO product.Melanotic melanoma cell cultures treated with 1 mM DABO for 24 and 48 h were viable and showed no signs of damage or cell death.The stability and possible trans-esterification of DABO is shortly discussed.Chemical calculations and quantitative structure-activity relationships(QSAR)analysis of DABO and the BNCT agent BPA indicated that they should be cell permeant and accumulate within lysosomes and melanosomes.Molecular modeling allows visualization of both the DABO precursor and the structure of a borate derivative of the proposed catechol-porphycene model for eumelanin,showing interesting features from molecular orbital calculations.The main difference between DABO and other agents,such as BPA,is that it is not a boronic acid nor a boron cluster.This simple catechol-borate ester(protected from oxidation and blackening)could be administrated to living cells and organisms,in which biosynthesis of boron-melanin in melanoma melanocytes can lead to improved BNCT.展开更多
Dear Editor,Uveal melanoma(UM)is the most common primary intraocular malignancy in adults[1].We are writing to present a case of recurrent UM.This case presents an important clinical challenge:vision preservation in p...Dear Editor,Uveal melanoma(UM)is the most common primary intraocular malignancy in adults[1].We are writing to present a case of recurrent UM.This case presents an important clinical challenge:vision preservation in patients with recurrent anterior UM,especially in young patients.Informed consent was obtained from the patient.This case study adhered to the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of Beijing Tongren Hospital(approval number:TRECKY2018-056).展开更多
基金supported by the Priority Research Centers Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant 2017R1A6A03015562 and RS-2023-00237386).
文摘Fucoidan,a sulfate polysaccharide obtained from brown seaweed,has various bioactive properties,including anti-inflammatory,anti-cancer,anti-viral,anti-oxidant,anti-coagulant,anti-thrombotic,anti-angiogenic,and anti-Helicobacter pylori properties.However,the effects of low-molecular-weight fucoidan(LMW-F)on melanoma cell lines and three dimensional(3D)cell culture models are not well understood.This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma.Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F.MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells and patientderived melanoma explants in a 3D-printed collagen scaffold.The PTEN/AKT pathway was found to be involved in the anti-melanoma effects of fucoidan.Western blot analysis revealed that LMW-F reduced the phosphorylation of Bcl-2 at Thr 56,which was associated with the prevention of anti-apoptotic activity of cancer cells.Our findings suggested that LMW-F could enhance anti-melanoma chemotherapy and improve the outcomes of patients with melanoma resistance.
基金supported by the Gusu Medical Key Talent Project of Suzhou City of China(GSWS2020005)the New Pharmaceutics and Medical Apparatuses Project of Suzhou City of China(SLJ2021007)+3 种基金the Suzhou City Key Clinical Disease Diagnosis and Treatment Technology Special Project,China(LCZX202129)Wujiang Science and Educational Health Revitalization Fund Project,Suzhou,China(WWK202015)the Scientific Research Project of Suzhou Ninth People’s Hospital,Suzhou,China(YK202008)and Suzhou“Science and Education”Youth Science and Technology Project,Suzhou,China(KJXW2020075).
文摘Colorectal cancer(CRC)stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally.Absent in melanoma 2(AIM2),a constituent of the interferoninducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family,contributes to both cancer progression and inflammasome activation.Despite this understanding,the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive.Consequently,this study endeavors to assess AIM2’s expression levels,explore its potential antitumor effects,elucidate associated cancer-related processes,and decipher the underlying signaling pathways in CRC.Our findings showed a reduced AIM2 expression in most CRC cell lines.Elevation of AIM2 levels suppressed CRC cell proliferation and migration,altered cell cycle by inhibiting G1/S transition,and induced cell apoptosis.Further research uncovered the participation of P38 mitogen-activated protein kinase(P38MAPK)in AIM2-mediated modulation of CRC cell apoptosis and proliferation.Altogether,our achievements distinctly underscored AIM2’s antitumor role in CRC.AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway,indicating AIM2 as a prospective and novel therapeutic target for CRC.
基金This work was supported by the Hunan Education Department Project(NO.20A390)National Innovation and Entrepreneurship Training Program(S202010548007).
文摘Background:Melanoma is a deadly skin tumor resulting from the malignant transformation of melanocytes.It is highly malignant and invasive,with the highest mortality rate among skin cancers.Acalypha australis L.(AAL),a plant with dual medicinal and culinary purposes,is commonly regarded as an edible wild vegetable in southern China.Additionally,AAL has a long history of medicinal use in China,often employed for its hemostatic,anti-diarrheal,and anti-inflammatory properties.Modern pharmacology has demonstrated that AAL possesses functions such as weight loss,antimicrobial activity,antiviral effects,and treatment for ulcerative colitis.However,there is currently no research available regarding its effectiveness and mechanisms of action on melanoma.Methods:In this investigation,we used methyl thiazolyl tetrazolium assay to detect cell viability,transwell assay to detect cell migration and invasion ability,and Western blot assay to detect relevant signaling pathways.Results:The present study reveals that 2 mg/mL AAL effectively suppresses the metastasis of B16 cells,while simultaneously triggering the expression of key apoptosis-related proteins,including Bcl-2,Bax,and cleaved caspased 3.Subsequent investigations demonstrate that AAL exerts this inhibitory effect via the PI3K/AKT signal transduction pathway,as evidenced by the observed deficits in Ras,AKT,p-AKT,and PI3K expression levels.Conclusion:These findings indicated that AAL could be a valuable therapeutic option for reducing the metastatic potential of B16 melanoma cells.
文摘BACKGROUND Immunotherapy has revolutionized the treatment of metastatic melanoma,but a significant proportion of patients still experience treatment resistance.Fecal microbiota transplantation(FMT)has emerged as a potential strategy to overcome immunotherapy resistance by modulating the gut microbiome.CASE SUMMARY We present a case report of a 57-year-old male with metastatic melanoma refractory to immunotherapy who received FMT in combination with antiprogrammed death-ligand 1(PD-L1)immunotherapy(pembrolizumab).After failing multiple lines of treatment,the patient underwent a single FMT procedure by colonoscopy using fecal material from a female metastatic melanoma donor who successfully responded to immunotherapy.Following FMT,the patient demonstrated a response with decreased subcutaneous disease and subsequently underwent surgery to remove the residual disease.Despite a subsequent recurrence in the small bowel that was resected,the patient remained on pembrolizumab without evidence of melanoma recurrence at the time of writing.CONCLUSION The favorable clinical and long-lasting effect we saw in our patient without significant toxicity suggests that this procedure should be considered in similar patients with immunotherapy refractory melanomas.
文摘The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is then irradiated with low-energy thermal neutrons,generating nuclear fission that produces 7lithium,4helium,andγrays.Simple catechol-borate esters have been rather overlooked as precursors of melanin biosynthesis,and therefore,a proof-of-concept approach for using dopamine-borate(DABO)as a suitable boron-containing candidate for potential BNCT is presented here.DABO can spontaneously oxidize and autopolymerize in vitro,giving a soluble,eumelaninlike brown-black poly-DABO product.Melanotic melanoma cell cultures treated with 1 mM DABO for 24 and 48 h were viable and showed no signs of damage or cell death.The stability and possible trans-esterification of DABO is shortly discussed.Chemical calculations and quantitative structure-activity relationships(QSAR)analysis of DABO and the BNCT agent BPA indicated that they should be cell permeant and accumulate within lysosomes and melanosomes.Molecular modeling allows visualization of both the DABO precursor and the structure of a borate derivative of the proposed catechol-porphycene model for eumelanin,showing interesting features from molecular orbital calculations.The main difference between DABO and other agents,such as BPA,is that it is not a boronic acid nor a boron cluster.This simple catechol-borate ester(protected from oxidation and blackening)could be administrated to living cells and organisms,in which biosynthesis of boron-melanin in melanoma melanocytes can lead to improved BNCT.
基金Supported by National Natural Science Foundation of China(No.82141128)the Capital Health Research and Development of Special(No.2020-1-2052)+4 种基金Beijing Natural Science Foundation(No.7204245)Science&Technology Project of Beijing Municipal Science&Technology Commission(No.Z201100005520045,No.Z181100001818003)Scientific Research Common Program of Beijing Municipal Commission of Education(No.KM202010025018)Beijing Municipal Administration of Hospitals’Youth Programme(No.QML20190202)Beijing Dongcheng District Outstanding Talents Cultivating Plan(No.2018).
文摘Dear Editor,Uveal melanoma(UM)is the most common primary intraocular malignancy in adults[1].We are writing to present a case of recurrent UM.This case presents an important clinical challenge:vision preservation in patients with recurrent anterior UM,especially in young patients.Informed consent was obtained from the patient.This case study adhered to the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board of Beijing Tongren Hospital(approval number:TRECKY2018-056).