Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinati...Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.展开更多
文摘Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.