Virtual manufacturing based on through-process modelling becomes an evolving research area which aims at integrating diverse simulation tools to realize computer-aided design, analysis, prototyping and manufacturing. ...Virtual manufacturing based on through-process modelling becomes an evolving research area which aims at integrating diverse simulation tools to realize computer-aided design, analysis, prototyping and manufacturing. Numerical prediction of the as-cast microstructure is an initial and critical step in the whole through- process modelling chain for engineering components. A commercial software package with the capability of calculating important microstructure features for aluminium alloys is used to simulate a G-AISi7MgCu0.5 laboratory casting. The simulated microstructure, namely grain size, secondary dendrite arm spacing and diverse phase fractions are verified experimentally. Correspondence and discrepancies are reported and discussed.展开更多
On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those...On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those new methods can ascertain the microstructure kind not only in the different characteristic zones of weld metal but also in the different morphologies in the heterogeneous mixture zone of weld metal. Those new methods. enrich and develop the traditional methods of predicting the microstructure of weld metal by Schaeffler Diagram, and are more concise and practical.展开更多
On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and ...On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and expressing weld metal microstnictiires of two kinds of dissimilar steel welded joints (pearlite/pearlite and austenite/pearlite) using austenitic filler materials by Schaeffler Diagram are suggested. Those new methods resolve some difficult problems which the microstructure kinds in two heterogeneous mixture zones of weld metal neighbouring two kinds of welded base metals are difficult to be accurately ascertained and the fluctuations of weld metal microstnictiires across fusion line are difficult to be conveniently expressed according to the traditional predicting method. The new predicting methods are more concise and practical.展开更多
An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
At the initial rolling temperature of 250 to 400 ℃, AZ31B magnesium alloy sheets were hot rolled by four different rolling routes. Microstructures and mechanical properties of the hot-rolled magnesium alloy sheets we...At the initial rolling temperature of 250 to 400 ℃, AZ31B magnesium alloy sheets were hot rolled by four different rolling routes. Microstructures and mechanical properties of the hot-rolled magnesium alloy sheets were analyzed by optical microscope and tensile tests respectively. Based on the Hall-Petch relation, considering the average grain size and grain size distribution, the nonlinear fitting analysis between the tensile strength and average grain size was carried on, and then the prediction model of tensile strength of hot-rolled AZ31B magnesium alloy sheet was established. The results indicate that, by rolling with multi-pass cross rolling, uniform, fine and equiaxial grain microstructures can be produced, the anisotropy of hot-rolled magnesium sheet can also be effectively weakened. Strong correlation was observed between the average grain size and tensile property of the hot-rolled magnesium alloy sheet. Grain size distribution coefficient d(CV) was introduced to reflect the dispersion degree about a set of grain size data, and then the Hall-Petch relation was perfected. Ultimately, the prediction accuracy of tensile strength of multi-pass hot-rolled AZ31B magnesium alloy was improved, and the prediction of tensile property can be performed by the model.展开更多
Here,we developed novel extended piecewise bilinear power law(C-m)models to describe flow stresses under broad ranges of strain,strain rate,and temperature for mechanical and metallurgical calculations during metal fo...Here,we developed novel extended piecewise bilinear power law(C-m)models to describe flow stresses under broad ranges of strain,strain rate,and temperature for mechanical and metallurgical calculations during metal forming at elevated temperatures.The traditional C-m model is improved upon by formulating the material parameters C and m,defined at sample strains and temperatures as functions of the strain rate.The coefficients are described as a linear combination of the basis functions defined in piecewise patches of the sample strain and temperature domain.A comparison with traditional closed-form function flow models revealed that our approach using the extended piecewise bilinear C-m model is superior in terms of accuracy,ease of use,and adaptability;additionally,the extended C-m model was applicable to numerical analysis of mechanical,metallurgical,and microstructural problems.Moreover,metallurgy-related values can be calculated directly from the flow stress information.Although the proposed model was developed for materials at elevated temperatures,it can be applied over a broad temperature range.展开更多
An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equa...An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equations for assessing the grain size evolution.Calibration and validation of this methodology involved a combination of experimentally acquired microstructural data from the extrusion of three different AA6063 profiles and results from the simulation using the Qform Extrusion UK finite element code.The outcomes proved the agreement between experimental findings and numerical prediction of the microstructural evolution.The trend of the grain size variation based on different process parameters was accurately simulated,both after dynamic and static recrystallization,with an error of less than 25% in almost the whole sampling computations.展开更多
基金financially supported by the Austrian Federal Government(in particular from the Bundesministerium für Verkehr,Innovation und Technologie and the Bundesministerium für Wirtschaft,Familie und Jugend)the Styrian Provincial Government,represented by sterreichische Forschungsfrderungsgesellschaft mbH+1 种基金by Steirische Wirts chaftsfrderungsgesellschaft mbH,within the research activities of the K2Competence Centre on"Integrated Research in Materials,Processing and Product Engineering"operated by the Materials Center Leoben Forschung GmbH in the framework of the Austrian COMET Competence Centre Programme
文摘Virtual manufacturing based on through-process modelling becomes an evolving research area which aims at integrating diverse simulation tools to realize computer-aided design, analysis, prototyping and manufacturing. Numerical prediction of the as-cast microstructure is an initial and critical step in the whole through- process modelling chain for engineering components. A commercial software package with the capability of calculating important microstructure features for aluminium alloys is used to simulate a G-AISi7MgCu0.5 laboratory casting. The simulated microstructure, namely grain size, secondary dendrite arm spacing and diverse phase fractions are verified experimentally. Correspondence and discrepancies are reported and discussed.
文摘On the base of a number of analyses and researches, some new methods of predicting and expressing the microstructure kinds, of the dissimilar steel welded joint of austenite/pearlite(ferrite) have been presented Those new methods can ascertain the microstructure kind not only in the different characteristic zones of weld metal but also in the different morphologies in the heterogeneous mixture zone of weld metal. Those new methods. enrich and develop the traditional methods of predicting the microstructure of weld metal by Schaeffler Diagram, and are more concise and practical.
文摘On the base of the methods of predicting weld metal microstructures of pearlitic dissimilar steel welded joints using austenitic type filler materials by Schaeffler Diagram[1], the other new methods of predicting and expressing weld metal microstnictiires of two kinds of dissimilar steel welded joints (pearlite/pearlite and austenite/pearlite) using austenitic filler materials by Schaeffler Diagram are suggested. Those new methods resolve some difficult problems which the microstructure kinds in two heterogeneous mixture zones of weld metal neighbouring two kinds of welded base metals are difficult to be accurately ascertained and the fluctuations of weld metal microstnictiires across fusion line are difficult to be conveniently expressed according to the traditional predicting method. The new predicting methods are more concise and practical.
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
基金Funded by the National Natural Science Foundation of China(No.U1510131)the Key Research and Development Projects of Shanxi Province(No.201603D121010)+1 种基金the Science and Technology Project of Jincheng City(No.20155010)the Project of Young Scholar of Shanxi Province and the Leading Talent Project of Innovative Entrepreneurial Team of Jiangsu Province and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi(TYAL)
文摘At the initial rolling temperature of 250 to 400 ℃, AZ31B magnesium alloy sheets were hot rolled by four different rolling routes. Microstructures and mechanical properties of the hot-rolled magnesium alloy sheets were analyzed by optical microscope and tensile tests respectively. Based on the Hall-Petch relation, considering the average grain size and grain size distribution, the nonlinear fitting analysis between the tensile strength and average grain size was carried on, and then the prediction model of tensile strength of hot-rolled AZ31B magnesium alloy sheet was established. The results indicate that, by rolling with multi-pass cross rolling, uniform, fine and equiaxial grain microstructures can be produced, the anisotropy of hot-rolled magnesium sheet can also be effectively weakened. Strong correlation was observed between the average grain size and tensile property of the hot-rolled magnesium alloy sheet. Grain size distribution coefficient d(CV) was introduced to reflect the dispersion degree about a set of grain size data, and then the Hall-Petch relation was perfected. Ultimately, the prediction accuracy of tensile strength of multi-pass hot-rolled AZ31B magnesium alloy was improved, and the prediction of tensile property can be performed by the model.
基金financially supported by the Ministry of Trade,Industry and Energy(MOTIE),Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program(Project No.P0011877)MOTIE as a part of the joint R&D project(Project No.10081334)。
文摘Here,we developed novel extended piecewise bilinear power law(C-m)models to describe flow stresses under broad ranges of strain,strain rate,and temperature for mechanical and metallurgical calculations during metal forming at elevated temperatures.The traditional C-m model is improved upon by formulating the material parameters C and m,defined at sample strains and temperatures as functions of the strain rate.The coefficients are described as a linear combination of the basis functions defined in piecewise patches of the sample strain and temperature domain.A comparison with traditional closed-form function flow models revealed that our approach using the extended piecewise bilinear C-m model is superior in terms of accuracy,ease of use,and adaptability;additionally,the extended C-m model was applicable to numerical analysis of mechanical,metallurgical,and microstructural problems.Moreover,metallurgy-related values can be calculated directly from the flow stress information.Although the proposed model was developed for materials at elevated temperatures,it can be applied over a broad temperature range.
文摘An innovative approach was introduced for the development of a AA6063 recrystallization model.This method incorporated a regression-based technique for the determination of material constants and introduced novel equations for assessing the grain size evolution.Calibration and validation of this methodology involved a combination of experimentally acquired microstructural data from the extrusion of three different AA6063 profiles and results from the simulation using the Qform Extrusion UK finite element code.The outcomes proved the agreement between experimental findings and numerical prediction of the microstructural evolution.The trend of the grain size variation based on different process parameters was accurately simulated,both after dynamic and static recrystallization,with an error of less than 25% in almost the whole sampling computations.