Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affe...Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affects their long-term reliability and effectiveness and creates hidden dangers for surgery.In this study,a multi-objective optimal design for the cutting performance and fatigue life of ultrasonic scalpels was proposed using finite element analysis and fatigue simulation.The optimal design parameters of resonance frequency and amplitude were determined.By setting the transition fillet and keeping the gain structure away from the node position to enable the scalpel to have a high service life with excellent cutting performance.The frequency modulation method of setting the vibration node bosses at the node position and setting the vibration antinode grooves at the antinode position was compared.Then,the mechanism of the influence of various design elements,such as tip,shank,node position,and antinode position,on the resonance frequency,amplitude,and fatigue life of the ultrasonic scalpel was analyzed,and the optimal design principles of the ultrasonic scalpel were obtained.The proposed ultrasonic scalpel design was confirmed by simulations,impedance measurements,and liver tissue cutting experiments,demonstrating its feasibility and enhanced performance.This research introduces innovative design strategies to improve the fatigue life and performance of ultrasonic scalpels to address an important issue in minimally invasive surgery.展开更多
The present study is focused on multi-objective performance optimization&thermodynamic analysis from the perspectives of energy and exergy for Recompression,Partial Cooling&Main Compression Intercooling superc...The present study is focused on multi-objective performance optimization&thermodynamic analysis from the perspectives of energy and exergy for Recompression,Partial Cooling&Main Compression Intercooling supercritical CO_(2)(sCO_(2))Brayton cycles for concentrated solar power(CSP)applications using machine learning algorithms.The novelty of this work lies in the integration of artificial neural networks(ANN)and genetic algorithms(GA)for optimizing the performance of advanced sCO_(2)power cycles considering climatic variation,which has significant implications for both the scientific community and engineering applications in the renewable energy sector.The methodology employed includes thermodynamic analysis based on energy,exergy&environmental factors including system performance optimization.The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component.Subsequently,thermodynamic model extracted dataset used for prediction&evaluation of Random Forest,XGBoost,KNN,AdaBoost,ANN and LightGBM algorithm.Finally,considering climate conditions,multi-objective optimization is carried out for the CSP integrated sCO_(2)Power cycle for optimal power output,exergy destruction,thermal and exergetic efficiency.Genetic algorithm and TOPSIS(technique for order of preference by similarity to ideal solution),multi-objective decision-making tool,were used to determine the optimum operating conditions.The major findings of this work reveal significant improvements in the performance of the advanced sCO_(2)cycle by 1.68%and 7.87%compared to conventional recompression and partial cooling cycle,respectively.This research could advance renewable energy technologies,particularly concentrated solar power,by improving power cycle designs to increase system efficiency and economic feasibility.Optimized advanced supercritical CO_(2)power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure,potentially opening new research avenues.展开更多
The evolution of the current network has challenges of programmability, maintainability and manageability, due to network ossification. This challenge led to the concept of software-defined networking (SDN), to decoup...The evolution of the current network has challenges of programmability, maintainability and manageability, due to network ossification. This challenge led to the concept of software-defined networking (SDN), to decouple the control system from the infrastructure plane caused by ossification. The innovation created a problem with controller placement. That is how to effectively place controllers within a network topology to manage the network of data plane devices from the control plane. The study was designed to empirically evaluate and compare the functionalities of two controller placement algorithms: the POCO and MOCO. The methodology adopted in the study is the explorative and comparative investigation techniques. The study evaluated the performances of the Pareto optimal combination (POCO) and multi-objective combination (MOCO) algorithms in relation to calibrated positions of the controller within a software-defined network. The network environment and measurement metrics were held constant for both the POCO and MOCO models during the evaluation. The strengths and weaknesses of the POCO and MOCO models were justified. The results showed that the latencies of the two algorithms in relation to the GoodNet network are 3100 ms and 2500 ms for POCO and MOCO respectively. In Switch to Controller Average Case latency, the performance gives 2598 ms and 2769 ms for POCO and MOCO respectively. In Worst Case Switch to Controller latency, the performance shows 2776 ms and 2987 ms for POCO and MOCO respectively. The latencies of the two algorithms evaluated in relation to the Savvis network, compared as follows: 2912 ms and 2784 ms for POCO and MOCO respectively in Switch to Controller Average Case latency, 3129 ms and 3017 ms for POCO and MOCO respectively in Worst Case Switch to Controller latency, 2789 ms and 2693 ms for POCO and MOCO respectively in Average Case Controller to Controller latency, and 2873 ms and 2756 ms for POCO and MOCO in Worst Case Switch to Controller latency respectively. The latencies of the two algorithms evaluated in relation to the AARNet, network compared as follows: 2473 ms and 2129 ms for POCO and MOCO respectively, in Switch to Controller Average Case latency, 2198 ms and 2268 ms for POCO and MOCO respectively, in Worst Case Switch to Controller latency, 2598 ms and 2471 ms for POCO and MOCO respectively, in Average Case Controller to Controller latency, 2689 ms and 2814 ms for POCO and MOCO respectively Worst Case Controller to Controller latency. The Average Case and Worst-Case latencies for Switch to Controller and Controller to Controller are minimal, and favourable to the POCO model as against the MOCO model when evaluated in the Goodnet, Savvis, and the Aanet networks. This simply indicates that the POCO model has a speed advantage as against the MOCO model, which appears to be more resilient than the POCO model.展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel...In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area an...In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area and does not participate in the stirring.As a result,bolts encounter high drilling resistance and cannot reach the bottom of drillholes.The effective anchorage length is far less than the actual anchorage length.Bolts are not centered,and the shear is misaligned at the joint surface in the reaming area,which leads to cracking of the whole anchoring solid and large shear deformation of bolts.This study systematically analyzes the characteristics of roadway bolt reaming and anchoring.The influences of resin stirring force,bolt pull-out force,and reamingeanchoring solid strength on reamingeanchoring performance were analyzed theoretically.The main purpose is to develop a device that enhances reaming and anchoring.The mechanism through which the device strengthens the reamingeanchoring solid was analyzed theoretically.Numerical simulation and experiments were carried out to verify the improved performance of the small-pore reaming and anchoring using the proposed technology.The results showed that the stirring migration rate of the resin cartridge is greatly improved by adding the device to bolts.The reaction rate of the anchoring mixture,stirring pressure,pull-out force of the reaming and anchoring system,bolt concentricity,and shear and compressive strengths of the anchoring solid are also enhanced in the reaming area.This ensures that the resin cartridge in the reaming area is completely stirred,which greatly improves the shear resistance of the reamingeanchoring solid.Meanwhile,the drilling performance,torsional force,and stirring efficiency of bolts are maximized and prevail over those of conventional bolts.展开更多
The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a c...The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a challenging issue for motor manufacturers to enhance the starting performance of existing mass-produced motors with minimal modifications and expenses.In this paper,a simple and cost-effective method to improve the starting performance of a commercial squirrel-cage induction motor(SCIM)is proposed.The influence of geometric parameters of the end-ring on the performance characteristics,including starting(locked rotor)torque,pull-up and break down torque,starting current,rotor electric parameters,current density,power losses,and efficiency have been comprehensively investigated.It has been revealed that among the other end-ring design parameters,the ring thickness has a significant effect on the performance characteristics.An optimal end-ring thickness is determined,and its performance characteristics have been compared to those of its initial counterpart.Numeric and parametric analyses have been conducted using a 2D time-stepping finite element method(FEM).The FEM results were validated using experimental measurements obtained from an 11 kW SCIM prototype.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en...Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m...The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.展开更多
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ...Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
This work investigates the influence of the type sludge on drainage, plant development, purification performances and biosolids quality. Drainage properties were measured through the frequency of clogging, the percent...This work investigates the influence of the type sludge on drainage, plant development, purification performances and biosolids quality. Drainage properties were measured through the frequency of clogging, the percentage of leachate recovered and the dryness of accumulated sludge. Plant development was measured through the density, the height and the stem diameter. Purification performance was evaluated from the reduction rate. Biosolids quality was measured after 3 months of maturation. The results show that the clogging frequencies were 9.5%;0% and 3.7%;the volume of leachate recovered was 42.2%;20.4% and 24.7% and, the dryness was 33.4%;61.1% and 52.4% for FS-ST, FS-STT and SS respectively. Plants densities were about, with densities 197.1, 171.3 and 178.3 plants/m2 in beds fed respectively with FS-ST, FS-STT and SS. Despite the high removal rates, the concentrations of pollutants in the leachates are above the Senegalese standard NS 05-061 for discharge into the environment. The biosolids are all mature with C/N and NH4+/NO3?ratios lower than 12 and 1 respectively. The biosolids are also rich in organic and mineral elements. The concentrations of Ascaris eggs are higher than the WHO recommendations. These biosolids should be stored for additional time or composted.展开更多
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ...For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.52005199,42241149)Shenzhen Fundamental Research Program of China (Grant Nos.JCYJ20200109150425085,JCYJ20220818102601004)+1 种基金Knowledge Innovation Program of Wuhan-Basic Research of China (Grant No.2022010801010203)Shenzhen Science and Technology Program of China (Grant Nos.JSGG20201103100001004,JSGG20220831105800001)。
文摘Ultrasonic scalpel design for minimally invasive surgical procedures is mainly focused on optimizing cutting performance.However,an important issue is the low fatigue life of traditional ultrasonic scalpels,which affects their long-term reliability and effectiveness and creates hidden dangers for surgery.In this study,a multi-objective optimal design for the cutting performance and fatigue life of ultrasonic scalpels was proposed using finite element analysis and fatigue simulation.The optimal design parameters of resonance frequency and amplitude were determined.By setting the transition fillet and keeping the gain structure away from the node position to enable the scalpel to have a high service life with excellent cutting performance.The frequency modulation method of setting the vibration node bosses at the node position and setting the vibration antinode grooves at the antinode position was compared.Then,the mechanism of the influence of various design elements,such as tip,shank,node position,and antinode position,on the resonance frequency,amplitude,and fatigue life of the ultrasonic scalpel was analyzed,and the optimal design principles of the ultrasonic scalpel were obtained.The proposed ultrasonic scalpel design was confirmed by simulations,impedance measurements,and liver tissue cutting experiments,demonstrating its feasibility and enhanced performance.This research introduces innovative design strategies to improve the fatigue life and performance of ultrasonic scalpels to address an important issue in minimally invasive surgery.
文摘The present study is focused on multi-objective performance optimization&thermodynamic analysis from the perspectives of energy and exergy for Recompression,Partial Cooling&Main Compression Intercooling supercritical CO_(2)(sCO_(2))Brayton cycles for concentrated solar power(CSP)applications using machine learning algorithms.The novelty of this work lies in the integration of artificial neural networks(ANN)and genetic algorithms(GA)for optimizing the performance of advanced sCO_(2)power cycles considering climatic variation,which has significant implications for both the scientific community and engineering applications in the renewable energy sector.The methodology employed includes thermodynamic analysis based on energy,exergy&environmental factors including system performance optimization.The system is modelled for net power production of 15 MW thermal output utilizing equations for the energy and exergy balance for each component.Subsequently,thermodynamic model extracted dataset used for prediction&evaluation of Random Forest,XGBoost,KNN,AdaBoost,ANN and LightGBM algorithm.Finally,considering climate conditions,multi-objective optimization is carried out for the CSP integrated sCO_(2)Power cycle for optimal power output,exergy destruction,thermal and exergetic efficiency.Genetic algorithm and TOPSIS(technique for order of preference by similarity to ideal solution),multi-objective decision-making tool,were used to determine the optimum operating conditions.The major findings of this work reveal significant improvements in the performance of the advanced sCO_(2)cycle by 1.68%and 7.87%compared to conventional recompression and partial cooling cycle,respectively.This research could advance renewable energy technologies,particularly concentrated solar power,by improving power cycle designs to increase system efficiency and economic feasibility.Optimized advanced supercritical CO_(2)power cycles in concentrated solar power plants might increase renewable energy use and energy generation infrastructure,potentially opening new research avenues.
文摘The evolution of the current network has challenges of programmability, maintainability and manageability, due to network ossification. This challenge led to the concept of software-defined networking (SDN), to decouple the control system from the infrastructure plane caused by ossification. The innovation created a problem with controller placement. That is how to effectively place controllers within a network topology to manage the network of data plane devices from the control plane. The study was designed to empirically evaluate and compare the functionalities of two controller placement algorithms: the POCO and MOCO. The methodology adopted in the study is the explorative and comparative investigation techniques. The study evaluated the performances of the Pareto optimal combination (POCO) and multi-objective combination (MOCO) algorithms in relation to calibrated positions of the controller within a software-defined network. The network environment and measurement metrics were held constant for both the POCO and MOCO models during the evaluation. The strengths and weaknesses of the POCO and MOCO models were justified. The results showed that the latencies of the two algorithms in relation to the GoodNet network are 3100 ms and 2500 ms for POCO and MOCO respectively. In Switch to Controller Average Case latency, the performance gives 2598 ms and 2769 ms for POCO and MOCO respectively. In Worst Case Switch to Controller latency, the performance shows 2776 ms and 2987 ms for POCO and MOCO respectively. The latencies of the two algorithms evaluated in relation to the Savvis network, compared as follows: 2912 ms and 2784 ms for POCO and MOCO respectively in Switch to Controller Average Case latency, 3129 ms and 3017 ms for POCO and MOCO respectively in Worst Case Switch to Controller latency, 2789 ms and 2693 ms for POCO and MOCO respectively in Average Case Controller to Controller latency, and 2873 ms and 2756 ms for POCO and MOCO in Worst Case Switch to Controller latency respectively. The latencies of the two algorithms evaluated in relation to the AARNet, network compared as follows: 2473 ms and 2129 ms for POCO and MOCO respectively, in Switch to Controller Average Case latency, 2198 ms and 2268 ms for POCO and MOCO respectively, in Worst Case Switch to Controller latency, 2598 ms and 2471 ms for POCO and MOCO respectively, in Average Case Controller to Controller latency, 2689 ms and 2814 ms for POCO and MOCO respectively Worst Case Controller to Controller latency. The Average Case and Worst-Case latencies for Switch to Controller and Controller to Controller are minimal, and favourable to the POCO model as against the MOCO model when evaluated in the Goodnet, Savvis, and the Aanet networks. This simply indicates that the POCO model has a speed advantage as against the MOCO model, which appears to be more resilient than the POCO model.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
基金supported in part by the Natural Science Youth Foundation of Hebei Province under Grant F2019403207in part by the PhD Research Startup Foundation of Hebei GEO University under Grant BQ2019055+3 种基金in part by the Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP-2021A06in part by the Fundamental Research Funds for the Universities in Hebei Province under Grant QN202220in part by the Science and Technology Research Project for Universities of Hebei under Grant ZD2020344in part by the Guangxi Natural Science Fund General Project under Grant 2021GXNSFAA075029.
文摘In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China-Liaoning Joint Fund Key Project(Grant No.U1908222)the National Natural Science Foundation of China Youth Science Fund(Grant No.52104087).
文摘In current practice of bolt reaming and anchoring of roadways in soft coal and rock mass,resin cartridges bend easily under the strong pushing and stirring of bolts,and the resin accumulates in the bolt-reamed area and does not participate in the stirring.As a result,bolts encounter high drilling resistance and cannot reach the bottom of drillholes.The effective anchorage length is far less than the actual anchorage length.Bolts are not centered,and the shear is misaligned at the joint surface in the reaming area,which leads to cracking of the whole anchoring solid and large shear deformation of bolts.This study systematically analyzes the characteristics of roadway bolt reaming and anchoring.The influences of resin stirring force,bolt pull-out force,and reamingeanchoring solid strength on reamingeanchoring performance were analyzed theoretically.The main purpose is to develop a device that enhances reaming and anchoring.The mechanism through which the device strengthens the reamingeanchoring solid was analyzed theoretically.Numerical simulation and experiments were carried out to verify the improved performance of the small-pore reaming and anchoring using the proposed technology.The results showed that the stirring migration rate of the resin cartridge is greatly improved by adding the device to bolts.The reaction rate of the anchoring mixture,stirring pressure,pull-out force of the reaming and anchoring system,bolt concentricity,and shear and compressive strengths of the anchoring solid are also enhanced in the reaming area.This ensures that the resin cartridge in the reaming area is completely stirred,which greatly improves the shear resistance of the reamingeanchoring solid.Meanwhile,the drilling performance,torsional force,and stirring efficiency of bolts are maximized and prevail over those of conventional bolts.
文摘The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a challenging issue for motor manufacturers to enhance the starting performance of existing mass-produced motors with minimal modifications and expenses.In this paper,a simple and cost-effective method to improve the starting performance of a commercial squirrel-cage induction motor(SCIM)is proposed.The influence of geometric parameters of the end-ring on the performance characteristics,including starting(locked rotor)torque,pull-up and break down torque,starting current,rotor electric parameters,current density,power losses,and efficiency have been comprehensively investigated.It has been revealed that among the other end-ring design parameters,the ring thickness has a significant effect on the performance characteristics.An optimal end-ring thickness is determined,and its performance characteristics have been compared to those of its initial counterpart.Numeric and parametric analyses have been conducted using a 2D time-stepping finite element method(FEM).The FEM results were validated using experimental measurements obtained from an 11 kW SCIM prototype.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金supported in part by the National Natural Science Foundation of China(Nos.22075027,52003030)Starting Grant from Beijing Institute of Technology and financial support from the State Key Laboratory of Explosion Science and Technology(YBKT21-06,YKBT23-05).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
文摘The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.52208380 and 51979270)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022).
文摘Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘This work investigates the influence of the type sludge on drainage, plant development, purification performances and biosolids quality. Drainage properties were measured through the frequency of clogging, the percentage of leachate recovered and the dryness of accumulated sludge. Plant development was measured through the density, the height and the stem diameter. Purification performance was evaluated from the reduction rate. Biosolids quality was measured after 3 months of maturation. The results show that the clogging frequencies were 9.5%;0% and 3.7%;the volume of leachate recovered was 42.2%;20.4% and 24.7% and, the dryness was 33.4%;61.1% and 52.4% for FS-ST, FS-STT and SS respectively. Plants densities were about, with densities 197.1, 171.3 and 178.3 plants/m2 in beds fed respectively with FS-ST, FS-STT and SS. Despite the high removal rates, the concentrations of pollutants in the leachates are above the Senegalese standard NS 05-061 for discharge into the environment. The biosolids are all mature with C/N and NH4+/NO3?ratios lower than 12 and 1 respectively. The biosolids are also rich in organic and mineral elements. The concentrations of Ascaris eggs are higher than the WHO recommendations. These biosolids should be stored for additional time or composted.
基金the National Natural Science Foundation of China(project code:52202470)Jilin Province Natural Science Foundation(project codes:20220101205JC,20220101212JC)+2 种基金Jilin Province Specific Project of Industrial Technology Research&Development(project code:2020C025-2)2021 Interdisciplinary Integration and Innovation Project of Jilin University(project code:XJRCYB07)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(project code:CAIRIZT20220202)。
文摘For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.