In this paper, a time division duplex (TDD) multicarrier system based on Nyquist filter bank is proposed for wireless broadband communications. In this system a novel two tap pre equalizer is adopted to effectively su...In this paper, a time division duplex (TDD) multicarrier system based on Nyquist filter bank is proposed for wireless broadband communications. In this system a novel two tap pre equalizer is adopted to effectively suppress the inter symbol interference (ISI). Studies show that the system has almost the same frequency spectrum efficiency as the orthogonal frequency division multiplexing (OFDM) system. Simulation results show that the proposed system outperforms the conventional OFDM system with one tap ...展开更多
Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of...Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of subcarriers for computation in each iteration, which reduces the complexity without any performance degradation. Moreover, a modified algorithm with even lower complexity is developed, and equal power allocation is introduced as an initial allocation to accelerate its convergence. Simulation results show that the modified algorithm achieves a considerable complexity reduction while causing only a minor drop in performance.展开更多
An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is base...An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.展开更多
We present two adaptive power and bit allocation algorithms for multicarrier systems in a frequency selective fading environment. One algorithm allocstes bit based on maximizing the channel capacity, another allocates...We present two adaptive power and bit allocation algorithms for multicarrier systems in a frequency selective fading environment. One algorithm allocstes bit based on maximizing the channel capacity, another allocates bit based on minimizing the bit-error-rate (BER). Two algorithms allocate power based on minimizing the BER. Results show that the proposed algorithms are more effective than Fischer's algorithm at low average signal-to-noise ration (SNR). This indicates that our algorithms can achieve high spectral efficiency and high communication reliability during bad channel state. Results also denote the bit and power allocation of each algorithm and effects of the number of subcarriers on the BER performance.展开更多
In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
The proposed scheme is based on Discrete Fourier Transform (DFT) domain processing. The key technology of this scheme is jamming parameters' accurate estimation and jamming reconstruction. Compared with the 't...The proposed scheme is based on Discrete Fourier Transform (DFT) domain processing. The key technology of this scheme is jamming parameters' accurate estimation and jamming reconstruction. Compared with the 'threshold exciser' scheme the proposed scheme can eliminate more jamming energy on the whole frequency band with the minimum loss of useful signal energy. As shown in the research and simulation, the proposed scheme is much better than the 'threshold exciser' scheme, especially in the case of high power jamming whereas the 'threshold exciser' scheme might be invalid.展开更多
Based on the theory of multicarrier(MC) technique and the Rake receiver, a multicarrier DS-CDMA Rake system is proposed, where a data sequence multiplied by a spreading sequence modulates multiple carriers. The receiv...Based on the theory of multicarrier(MC) technique and the Rake receiver, a multicarrier DS-CDMA Rake system is proposed, where a data sequence multiplied by a spreading sequence modulates multiple carriers. The receiver provides a Rake for each subcarrier, and the outputs of the Rakes are combined by a maximal-ratio combiner. The average probability of error of the system is derived from an uncorrelated subcarrier and frequency-selective fading channel model. The system performances are evaluated over Rayleigh fading channel with an exponential multipath intensity profile(MIP) and with a rectangular MIP, respectively, when multipath interference is present. It is found that this kind of model has larger superiority in an exponential MIP than in a rectangular MIP.展开更多
Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for th...Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.展开更多
An antenna array based base station receiver for multicarrier Direct Sequence Code Division Multiple Access (DS-CDMA) system is proposed. The main advantage of the receiver is that the spatial diversity is achieved by...An antenna array based base station receiver for multicarrier Direct Sequence Code Division Multiple Access (DS-CDMA) system is proposed. The main advantage of the receiver is that the spatial diversity is achieved by combining signals of array elements. Based on the detailed analysis of multiuser interference and noise characteristics, the performance of the proposed receiver is analyzed. Theoretical analysis shows significant performance improvement in terms of system capacity due to the use of antenna arrays compared with the conventional single antenna multicarrier DS-CDMA approach. Simulation results confirm the theoretical analysis.展开更多
A new convolutionally coded direct sequence (DS) CDMA system is proposed. The outputs of a convolutional encoder modulate multiple band-limited DS-CDMA waveforms. The receiver detects and combines signals for the desi...A new convolutionally coded direct sequence (DS) CDMA system is proposed. The outputs of a convolutional encoder modulate multiple band-limited DS-CDMA waveforms. The receiver detects and combines signals for the desired user and feeds a soft-decision Viterbi decoder. The performance of this system is compared to that of a convolutionally coded single carrier DS CDMA system with a Rake receiver. At roughly equivalent receiver complexity, results will demonstrate superior performance of the coded multicarrier system.展开更多
Focusing on the space-time coded multiuser mobile communication systems in the frequency-selective fading environment, this paper proposes a Vertical Bell labs LAyered Space-Time (V-BLAST) coded Multicarrier Code-Divi...Focusing on the space-time coded multiuser mobile communication systems in the frequency-selective fading environment, this paper proposes a Vertical Bell labs LAyered Space-Time (V-BLAST) coded Multicarrier Code-Division Multiple-Access (MC-CDMA) scheme and its blind channel identification algorithm. This algorithm employs an ESPRIT-like method and the singular value decomposition, and the channels between every transmit antenna of every user and every receive antenna of the base station are blindly estimated with a closed-form solution. Based on it, an equivalent Minimum Mean-Squared Error (MMSE) time-domain multiuser detector is derived. Moreover, the proposed scheme exploits the precoding in the transmitter in order to eliminate the constraint of more receive antennas than transmit ones, required by most conventional V-BLAST codec schemes. Computer simulation results demonstrate the validity of this proposed scheme.展开更多
In MultiCarrier Code-Division Multiple-Access (MC-CDMA) system, the received signals scattered in the frequency domain are combined to get frequency diversity gain. However, the frequency diversity gain is limited bec...In MultiCarrier Code-Division Multiple-Access (MC-CDMA) system, the received signals scattered in the frequency domain are combined to get frequency diversity gain. However, the frequency diversity gain is limited because of correlation between aubcarriers. A novel interleaving scheme for MC-CDMA system is proposed in this paper. A circular shifting register is introduced into each subcarrier branch to decrease the correlation between subcarriers. By using interleaving, frequency diversity gain of system is increased. System structure and model with interleaver are discussed. In the case of multiple users, Parallel Interference Cancellation (PIC) technique is also introduced. Computer simulations demonstrate the performance of proposed scheme, and the performance comparison of MC-CDMA with interleaver and conventional MC-CDMA system is shown as well.展开更多
Code-Division Multiple-Access (CDMA) systems are interference limited,and therefore efficient interference management is necessary to enhance the performance of a CDMA system.In this paper,a successive beamforming (sp...Code-Division Multiple-Access (CDMA) systems are interference limited,and therefore efficient interference management is necessary to enhance the performance of a CDMA system.In this paper,a successive beamforming (spatial filtering),linear decorrelating MultiUser Detection (MUD, temporal filtering) and diversity reception structure for uplink multicarrier Direct Sequence CDMA (DS-CDMA) system with antenna array are proposed.By beamforming,the antenna array suppresses interference according to the distinct array signature.Subsequently,linear decorrelating MUD is ap- plied to separate the signals of different users and eliminate Multiple Access Interference (MAI).Finally, the decorrelated signals at different subcarriers that belong to the same user are combined to achieve frequency diversity.Simulation results show that the proposed structure offers significant Bit Error Rate (BER) performance improvement by successively exploiting the space-time-frequency processing.展开更多
In Wavelet Packets Based Multicarrier Multicode CDMA system, the multicode (MCD) part ensures the transmission for high speed and flexible data rate, the multicarrier (MC) part ensures the flexibility of handling mult...In Wavelet Packets Based Multicarrier Multicode CDMA system, the multicode (MCD) part ensures the transmission for high speed and flexible data rate, the multicarrier (MC) part ensures the flexibility of handling multiple data rates, and wavelet packets modulation technique contributes to the mitigation of the interference problems. The CDMA system can suppress a given amount of interference. In this paper, the receiver employs suppression filter (SF) to mitigate the effect of narrow-band jammer interference and diversity techniques to reduce multiple access interference. The framework for the system and the performance evaluation are presented in terms of bit error rate (BER) over a Nakagami fading channel. Also, we investigate how the performance is influenced by various parameters, such as the number of taps of the SF, the ratio of narrow-band interference bandwidth to the spread-spectrum bandwidth, the diversity order, the fading parameter and so on. Finally, the performance of the system is compared with the performance Sinusoidal (Sin) based MC/MCD CDMA system.展开更多
The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a c...The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a chal-lenge to mobile communication technology researchers and designers.5G systems could benefit from the Universal Filtered Multicarrier(UFMC).UFMC is an alternate waveform to orthogonal frequency-division multiplexing(OFDM),infiltering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference(ICI)between neighbouring users is reduced via the sub-bandfiltering process,which reduces out-of-band emissions.However,the UFMC system has a high Peak-to-Average Power Ratio(PAPR),which limits its capabilities.Metaheuristic optimization based Selective mapping(SLM)is used in this paper to optimise the UFMC-PAPR.Based on the cognitive behaviour of crows,the research study suggests an innovative metaheuristic opti-mization known as Crow Search Algorithm(CSA)for SLM optimization.Com-pared to the standard UFMC,SLM-UFMC system,and SLM-UFMC with conventional metaheuristic optimization techniques,the suggested technique sig-nificantly reduces PAPR.For the UFMC system,the suggested approach has a very low Bit Error Rate(BER).展开更多
Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communicatio...Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.展开更多
Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,cha...Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.展开更多
Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution ...Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.展开更多
This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorit...This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.展开更多
The model of the MGCDMA system using selective mapping (SLM) is analyzed and the upper bound of the peak-average power ratio (PAPR) in the system is derived. For the PAPR distribution and the connection between th...The model of the MGCDMA system using selective mapping (SLM) is analyzed and the upper bound of the peak-average power ratio (PAPR) in the system is derived. For the PAPR distribution and the connection between the PAPR and the number of users in the MC-CDMA system using SLM, the simulations are given based on several phase sequences in SLM. The simulation results slow that when randdom sequences, Shapiro-Rudin sequences or Golay complementary sequences are selected as the phase sequences in SLM, SLM has obvious effect on the PAPR reduction in MC-CDMA system and the system PAPR nearly maintains constant as the number of users varies. The maximal PAPR in the MC-CDMA system using SLM(10 ttsers)is about 6.3 which is 3.3 less than that in the common MC-CDMA system (without SLM).展开更多
文摘In this paper, a time division duplex (TDD) multicarrier system based on Nyquist filter bank is proposed for wireless broadband communications. In this system a novel two tap pre equalizer is adopted to effectively suppress the inter symbol interference (ISI). Studies show that the system has almost the same frequency spectrum efficiency as the orthogonal frequency division multiplexing (OFDM) system. Simulation results show that the proposed system outperforms the conventional OFDM system with one tap ...
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2006AA01Z263)the National Natural Science Foundation of China (No60496311)
文摘Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of subcarriers for computation in each iteration, which reduces the complexity without any performance degradation. Moreover, a modified algorithm with even lower complexity is developed, and equal power allocation is introduced as an initial allocation to accelerate its convergence. Simulation results show that the modified algorithm achieves a considerable complexity reduction while causing only a minor drop in performance.
基金the National Natural Science Foundation of China (60496313)
文摘An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.
基金Supported by the National Natural Science Foundation of China (No. 60496313)
文摘We present two adaptive power and bit allocation algorithms for multicarrier systems in a frequency selective fading environment. One algorithm allocstes bit based on maximizing the channel capacity, another allocates bit based on minimizing the bit-error-rate (BER). Two algorithms allocate power based on minimizing the BER. Results show that the proposed algorithms are more effective than Fischer's algorithm at low average signal-to-noise ration (SNR). This indicates that our algorithms can achieve high spectral efficiency and high communication reliability during bad channel state. Results also denote the bit and power allocation of each algorithm and effects of the number of subcarriers on the BER performance.
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金the National Natural Science Foundation of China(No.60172029)
文摘The proposed scheme is based on Discrete Fourier Transform (DFT) domain processing. The key technology of this scheme is jamming parameters' accurate estimation and jamming reconstruction. Compared with the 'threshold exciser' scheme the proposed scheme can eliminate more jamming energy on the whole frequency band with the minimum loss of useful signal energy. As shown in the research and simulation, the proposed scheme is much better than the 'threshold exciser' scheme, especially in the case of high power jamming whereas the 'threshold exciser' scheme might be invalid.
基金Natural Science Key Projects from Education Department of Hubei Province(2004D002)
文摘Based on the theory of multicarrier(MC) technique and the Rake receiver, a multicarrier DS-CDMA Rake system is proposed, where a data sequence multiplied by a spreading sequence modulates multiple carriers. The receiver provides a Rake for each subcarrier, and the outputs of the Rakes are combined by a maximal-ratio combiner. The average probability of error of the system is derived from an uncorrelated subcarrier and frequency-selective fading channel model. The system performances are evaluated over Rayleigh fading channel with an exponential multipath intensity profile(MIP) and with a rectangular MIP, respectively, when multipath interference is present. It is found that this kind of model has larger superiority in an exponential MIP than in a rectangular MIP.
基金This project was supported by the National Natural Science Foundation of China (No. 69872029) the Research Fund for Doctoral Program of Higher Education of China (No. 1999069808).
文摘Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.
基金Supported by the National Natural Science Foundation of China (No.60372014)Open Research Foundation of National Mobile Communications Research Laboratory, Southeast University, China.
文摘An antenna array based base station receiver for multicarrier Direct Sequence Code Division Multiple Access (DS-CDMA) system is proposed. The main advantage of the receiver is that the spatial diversity is achieved by combining signals of array elements. Based on the detailed analysis of multiuser interference and noise characteristics, the performance of the proposed receiver is analyzed. Theoretical analysis shows significant performance improvement in terms of system capacity due to the use of antenna arrays compared with the conventional single antenna multicarrier DS-CDMA approach. Simulation results confirm the theoretical analysis.
文摘A new convolutionally coded direct sequence (DS) CDMA system is proposed. The outputs of a convolutional encoder modulate multiple band-limited DS-CDMA waveforms. The receiver detects and combines signals for the desired user and feeds a soft-decision Viterbi decoder. The performance of this system is compared to that of a convolutionally coded single carrier DS CDMA system with a Rake receiver. At roughly equivalent receiver complexity, results will demonstrate superior performance of the coded multicarrier system.
基金Partially supported by the National Natural Science Foundation of China (No.60502022)the Research Fund for Doctoral Program of Higher Education of China (No. 20020698024, No.20030698027)
文摘Focusing on the space-time coded multiuser mobile communication systems in the frequency-selective fading environment, this paper proposes a Vertical Bell labs LAyered Space-Time (V-BLAST) coded Multicarrier Code-Division Multiple-Access (MC-CDMA) scheme and its blind channel identification algorithm. This algorithm employs an ESPRIT-like method and the singular value decomposition, and the channels between every transmit antenna of every user and every receive antenna of the base station are blindly estimated with a closed-form solution. Based on it, an equivalent Minimum Mean-Squared Error (MMSE) time-domain multiuser detector is derived. Moreover, the proposed scheme exploits the precoding in the transmitter in order to eliminate the constraint of more receive antennas than transmit ones, required by most conventional V-BLAST codec schemes. Computer simulation results demonstrate the validity of this proposed scheme.
文摘In MultiCarrier Code-Division Multiple-Access (MC-CDMA) system, the received signals scattered in the frequency domain are combined to get frequency diversity gain. However, the frequency diversity gain is limited because of correlation between aubcarriers. A novel interleaving scheme for MC-CDMA system is proposed in this paper. A circular shifting register is introduced into each subcarrier branch to decrease the correlation between subcarriers. By using interleaving, frequency diversity gain of system is increased. System structure and model with interleaver are discussed. In the case of multiple users, Parallel Interference Cancellation (PIC) technique is also introduced. Computer simulations demonstrate the performance of proposed scheme, and the performance comparison of MC-CDMA with interleaver and conventional MC-CDMA system is shown as well.
基金Supported by the National Natural Science Foundation of China (No.60572036)Open Research Fund of National Mobile Communications Research Laboratory,Southeast University,China.
文摘Code-Division Multiple-Access (CDMA) systems are interference limited,and therefore efficient interference management is necessary to enhance the performance of a CDMA system.In this paper,a successive beamforming (spatial filtering),linear decorrelating MultiUser Detection (MUD, temporal filtering) and diversity reception structure for uplink multicarrier Direct Sequence CDMA (DS-CDMA) system with antenna array are proposed.By beamforming,the antenna array suppresses interference according to the distinct array signature.Subsequently,linear decorrelating MUD is ap- plied to separate the signals of different users and eliminate Multiple Access Interference (MAI).Finally, the decorrelated signals at different subcarriers that belong to the same user are combined to achieve frequency diversity.Simulation results show that the proposed structure offers significant Bit Error Rate (BER) performance improvement by successively exploiting the space-time-frequency processing.
文摘In Wavelet Packets Based Multicarrier Multicode CDMA system, the multicode (MCD) part ensures the transmission for high speed and flexible data rate, the multicarrier (MC) part ensures the flexibility of handling multiple data rates, and wavelet packets modulation technique contributes to the mitigation of the interference problems. The CDMA system can suppress a given amount of interference. In this paper, the receiver employs suppression filter (SF) to mitigate the effect of narrow-band jammer interference and diversity techniques to reduce multiple access interference. The framework for the system and the performance evaluation are presented in terms of bit error rate (BER) over a Nakagami fading channel. Also, we investigate how the performance is influenced by various parameters, such as the number of taps of the SF, the ratio of narrow-band interference bandwidth to the spread-spectrum bandwidth, the diversity order, the fading parameter and so on. Finally, the performance of the system is compared with the performance Sinusoidal (Sin) based MC/MCD CDMA system.
文摘The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a chal-lenge to mobile communication technology researchers and designers.5G systems could benefit from the Universal Filtered Multicarrier(UFMC).UFMC is an alternate waveform to orthogonal frequency-division multiplexing(OFDM),infiltering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference(ICI)between neighbouring users is reduced via the sub-bandfiltering process,which reduces out-of-band emissions.However,the UFMC system has a high Peak-to-Average Power Ratio(PAPR),which limits its capabilities.Metaheuristic optimization based Selective mapping(SLM)is used in this paper to optimise the UFMC-PAPR.Based on the cognitive behaviour of crows,the research study suggests an innovative metaheuristic opti-mization known as Crow Search Algorithm(CSA)for SLM optimization.Com-pared to the standard UFMC,SLM-UFMC system,and SLM-UFMC with conventional metaheuristic optimization techniques,the suggested technique sig-nificantly reduces PAPR.For the UFMC system,the suggested approach has a very low Bit Error Rate(BER).
基金supported by the MOST Program of International S&T Cooperation(Grant No.2016YFE0123200)National Natural Science Foundation of China(Grant No.61471100/61101090/61571082)+1 种基金Science and Technology on Electronic Information Control Laboratory(Grant No.6142105040103)Fundamental Research Funds for the Central Universities(Grant No.ZYGX2015J012/ZYGX2014Z005)
文摘Compared to OFDM systems with cyclic prefi x, fi lterbank multicarrier with offset quadrature amplitude modulation(FBMC/OQAM) system is considered as an alternative technology for next generation wireless communication systems. However, FBMC systems suffer from intrinsic imaginary interference caused by the real-fi eld orthogonality destruction when passing through complex-valued fading channels. By analyzing the transmultiplexer's response of FBMC/OQAM systems, in this paper, a simple conjugated transmission scheme is proposed for FBMC/OQAM systems. Following the specific conjugation design, the intrinsic imaginary interference including the intrinsic inter-symbol and the inter-carrier interference can be eliminated at the receiver side through linear signal processing operation. Meanwhile, the proposed conjugated transmission scheme is able to obtain extra linear combination diversity gains for improving the systematic performance of FBMC/OQAM. Simulation results show that the proposed scheme is more efficient than conventional methods, especially in practical application scenarios with large Doppler spread caused by high-speed movement.
基金the National Natural Science Foundation of China(No.61601296,61701295)the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineering Science(No.2018RC43).
文摘Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.
基金supported by the National Natural Science Foundation of China (6087213461072117)
文摘Orthogonal frequency division multiplexing(OFDM) radar with multicarrier phase-coded waveforms has been recently introduced to achieve high range resolution.The conventional method for obtaining the high resolution range profile(HRRP) is based on matched filters.A method of synthesizing HRRP based on the fast Fourier transform(FFT) and decoding is proposed.The mathematical expressions of HRRP are derived by assuming an elementary scenario of point-scattering targets.Based on the characteristic of OFDM multicarrier signals,it mainly analyzes the influence on HRRP exerted by several factors,such as velocity compensation errors,the sampling frequency offset,and so on.The conclusions are significant for the design of the OFDM imaging radar.Finally,the simulation results demonstrate the validity of the conclusions.
基金supported by the National Natural Science Foundation of China(60872026)the Natural Science Foundation of Tianjin(09JCZDJC16900)
文摘This paper presents an algorithm that aims to reduce the peak-to-average power ratio(PAPR) of orthogonal frequency division multiplexing(OFDM) communication systems while maintaining frequency tracking.The algorithm achieves PAPR reduction by applying the complex conjugates of the data symbol obtained from the frequency domain to cancel the phase of the data symbol.A likelihood estimator is used to obtain the sub-carrier phase error due to the residual carrier frequency offset(RCFO) using the same complex conjugates as a pilot signal.Furthermore,a joint time and frequency domain multicarrier phase locked loop(MPLL) is developed to compensate additional frequency offset.Simulation results show that this algorithm is capable of reducing PAPR without impacting the frequency tracking performance.
文摘The model of the MGCDMA system using selective mapping (SLM) is analyzed and the upper bound of the peak-average power ratio (PAPR) in the system is derived. For the PAPR distribution and the connection between the PAPR and the number of users in the MC-CDMA system using SLM, the simulations are given based on several phase sequences in SLM. The simulation results slow that when randdom sequences, Shapiro-Rudin sequences or Golay complementary sequences are selected as the phase sequences in SLM, SLM has obvious effect on the PAPR reduction in MC-CDMA system and the system PAPR nearly maintains constant as the number of users varies. The maximal PAPR in the MC-CDMA system using SLM(10 ttsers)is about 6.3 which is 3.3 less than that in the common MC-CDMA system (without SLM).