期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
Plasma‐oxidized 2D MXenes subnanochannel membrane for high‐performance osmotic energy conversion 被引量:2
1
作者 Zhengmao Ding Tiancheng Gu +5 位作者 Rui Zhang Shouyi Sun Kaiqiang Wang Hanli Zhang Jinjin Li Yunjun Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期178-191,共14页
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene... Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting. 展开更多
关键词 ion transport MXenes membranes osmotic energy harvesting PLASMA two‐dimensional nanochannels
下载PDF
Biomimetic MXene membranes with negatively thermo-responsive switchable 2D nanochannels for graded molecular sieving
2
作者 Yi Wang Yangyang Wang +5 位作者 Chang Liu Dongjian Shi Weifu Dong Baoliang Peng Liangliang Dong Mingqing Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1058-1067,共10页
Negatively thermo-responsive 2D membranes,which mimic the stomatal opening/closing of plants,have drawn substantial interest for tunable molecular separation processes.However,these membranes are still restricted sign... Negatively thermo-responsive 2D membranes,which mimic the stomatal opening/closing of plants,have drawn substantial interest for tunable molecular separation processes.However,these membranes are still restricted significantly on account of low water permeability and poor dynamic tunability of 2D nanochannels under temperature stimulation.Here,we present a biomimetic negatively thermo-responsive MXene membrane by covalently grafting poly(N-isopropylacrylamide)(PNIPAm)onto MXene nanosheets.The uniformly grafted PNIPAm polymer chains can enlarge the interlayer spacings for increasing water permeability while also allowing more tunability of 2D nanochannels for enhancing the capability of gradually separating multiple molecules of different sizes.As expected,the constructed membrane exhibits ultrahigh water permeance of 95.6 L m^(-2) h^(-1) bar^(-1) at 25℃,which is eight-fold higher than the state-of-the-art negatively thermoresponsive 2D membranes.Moreover,the highly temperature-tunable 2D nanochannels enable the constructed membrane to perform excellent graded molecular sieving for dye-and antibiotic-based ternary mixtures.This strategy provides new perspectives in engineering smart 2D membrane and expands the scope of temperature-responsive membranes,showing promising applications in micro/nanofluidics and molecular separation. 展开更多
关键词 Thermo-responsive 2D membrane MXene nanosheets PNIPAM Temperature-tunable 2D nanochannels Graded molecular sieving
下载PDF
Molecular dynamics simulation of ion transportation through graphene nanochannels 被引量:1
3
作者 陈辰 陈云飞 +4 位作者 沙菁■ 伍根生 马建 李堃 纪安平 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期171-176,共6页
The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both si... The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both sides of graphene nanopore with various diameters. Then, their changing relationship with respect to the nanopore diameter is determined. When applying a uniform electric field, polar water molecules are rearranged so that the corresponding relationship between the polarized degree of these molecules and the nanopore diameter can be created. Based on the theoretical model of ion transportation through nanochannels,the changing relationship between the concentration of anions/cations in nanochannels and bulk solution concentration is quantitatively analyzed. The results show that the increase of potential drop and charge accumulation, as well as a more obvious water polarization, will occur with the decrease of nanopore diameter. In addition, hydrogen ion concentration has a large proportion in nanochannels with a sodium chloride(NaCl) solution at a relative low concentration. As the NaCl concentration increases, the concentration appreciation of sodium ions tends to be far greater than the concentration drop of chloride ions. Therefore, sodium ion concentration makes more contribution to ionic conductance. 展开更多
关键词 molecular dynamics simulation ion transportation graphene nanochannels ionic conductance
下载PDF
On flow characteristics of liquid-solid mixed-phase nanofluid inside nanochannels 被引量:4
4
作者 H.AMINFAR N.RAZMARA M.MOHAMMADPOURFARD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第12期1541-1554,共14页
The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when t... The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel. 展开更多
关键词 clustering liquid-solid molecular dynamics simulation (MDS) nanofluid nanochannel
下载PDF
Electrokinetic flow in the U-shaped micro-nanochannels 被引量:3
5
作者 Bilong Qiu Lingyan Gong +1 位作者 Zirui Li Jongyoon Han 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第1期36-42,I0005,共8页
U-shaped micro-nanochannels can generate significant flow disturbance as well as locally amplified electric field, which gives itself potential to be microfluidic mixers, electrokinetic pumps,and even cell lysis proce... U-shaped micro-nanochannels can generate significant flow disturbance as well as locally amplified electric field, which gives itself potential to be microfluidic mixers, electrokinetic pumps,and even cell lysis process. Numerical simulation is utilized in this work to study the hidden characteristics of the U-shaped micro-nanochannel system, and the effects of key controlling parameters(the external voltage and pressure) on the device output metrics(current, maximum values of electric field, shear stress and flow velocity) were evaluated. A large portion of current flowing through the whole system goes through the nanochannels, rather than the middle part of the microchannel, with its value increasing linearly with the increase of voltage. Due to the local ion depletion near micro-nanofluidic junction, significantly enhanced electric field(as much as 15 fold at V=1 V and P_0=0) as well as strong shear stress(leading to electrokinetic flow) is generated.With increasing external pressure, both electric field and shear stress can be increased initially(due to shortening of depletion region length), but are suppressed eventually at higher pressure due to the destruction of ion depletion layer. Insights gained from this study could be useful for designing nonlinear electrokinetic pumps and other systems. 展开更多
关键词 U-shaped micro-nanochannels Electrokinetic flow Maximum shear stress
下载PDF
Synthesis, Characterization and X-Ray Structure of a Ba(II)/Ag(I)/Cr(III)-Oxalate Salt with Water-Filled Nanochannels 被引量:1
6
作者 Clémence Eboga Tanke Bridget N. Ndosiri +2 位作者 Yves A. Mbiangué Gouet Bebga Justin Nenwa 《American Journal of Analytical Chemistry》 2016年第1期99-106,共8页
A novel mixed barium(II)/silver(I)/chromium(III) oxalate salt, Ba<sub>0.5</sub>Ag<sub>2</sub>[Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·5H<sub>2... A novel mixed barium(II)/silver(I)/chromium(III) oxalate salt, Ba<sub>0.5</sub>Ag<sub>2</sub>[Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]·5H<sub>2</sub>O (1), with open architecture has been synthesized in water and characterized by elemental analysis, vibrational and electronic spectra, and single crystal X-ray structure determination. Compound 1 crystallizes in a monoclinic space group C2/c, with unit cell parameters a = 18.179(3), b = 14.743(2), c = 12.278(2)&Aring;, β = 113.821(3), V = 3010.34(90) &Aring;<sup>3</sup>, Z = 8. The structure is characterized by a network of anionic [Cr(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]<sup>3-</sup> units connected through the O atoms of the oxalates to Ba<sup>2+</sup> and Ag<sup>+</sup> sites, forming a three-dimensional coordination polymer with one-dimensional isolated nanochannels parallel to the c axis, and encapsulating hydrogen-bonded guest water molecules. The bulk structure is consolidated by O–H···O bridgings within the nanochannels and by coulombic interactions. 展开更多
关键词 Crystal Structure Chromium(III) Complex nanochannelS Coordination Polymer Guest-Water Molecules
下载PDF
Electrokinetic pumping system based on nanochannel membrane for liquid delivery
7
作者 Ling Xin Chen Qing Ling Li +2 位作者 Xiao Lei Wang Hai Long Wang Ya Feng Guan 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第3期352-354,共3页
Nonmechanical pumping of liquids is of key importance for applications from the biomedical microfluidic chip to drug delivery systems. In this paper, a new electrokinetic pump (EOP) system with polycarbonate nanoeha... Nonmechanical pumping of liquids is of key importance for applications from the biomedical microfluidic chip to drug delivery systems. In this paper, a new electrokinetic pump (EOP) system with polycarbonate nanoehannel membrane sandwiched between two membrane holders was constructed. The pump was tested with water and phosphate buffer at 1-6 V applied voltage, the maximum pressure and flow rate are 0.32 MPa (3.2 atm) and 4.2 μL/min for phosphate buffer, respectively. This proof-of-concept pump shows its potential use for drugs or chemical agents delivery by the usage of different membrane materials. 展开更多
关键词 Electrokinetic pump Electroosmotic pump nanochannel Microfluidic chip ΜTAS
下载PDF
Temperature Fluctuations in a Rectangular Nanochannel
8
作者 José A. Fornés 《Journal of Biomaterials and Nanobiotechnology》 2015年第3期117-125,共9页
We consider an incompressible fluid in a rectangular nanochannel. We solve numerically the three dimensional Fourier heat equation to get the steady solution for the temperature. Then we set and solve the Langevin equ... We consider an incompressible fluid in a rectangular nanochannel. We solve numerically the three dimensional Fourier heat equation to get the steady solution for the temperature. Then we set and solve the Langevin equation for the temperature. We have developed equations in order to determine relaxation time of the temperature fluctuations, τT = 4.62 × 10-10s. We have performed a spectral analysis of the thermal fluctuations, with the result that temporal correlations are in the one-digit ps range, and the thermal noise excites the thermal modes in the two-digit GHz range. Also we observe long-range spatial correlation up to more than half the size of the cell, 600 nm;the wave number, q, is in the 106 m-1 range. We have also determined two thermal relaxation lengths in the z direction: l1 = 1.18 nm and l2 = 9.86 nm. 展开更多
关键词 nanochannelS Temperature FLUCTUATIONS Random Heat Flow Thermal RELAXATION Temporal and Spatial CORRELATIONS
下载PDF
Anionic Nanochanneled Silver-Deficient Oxalatochromate(III) Complex with Hydroxonium as Counter Ion: Synthesis, Characterization and Crystal Structure
9
作者 Clémence T. Eboga Gouet Bebga +4 位作者 Yves A. Mbiangué Emmanuel N. Nfor Patrick L. Djonwouo Michel M. Bélombé Justin Nenwa 《Open Journal of Inorganic Chemistry》 2017年第3期75-87,共13页
Reaction of Ba0.50[Ag2Cr(C2O4)3]·5H2O with Ag2SO4 in an aqueous solution of sulfuric acid (pH ≈ 3) yielded the silver(I)/chromium(III) oxalate salt H0.50[Ag2.50Cr(C2O4)3]·5H2O (1). Compound 1 can be best de... Reaction of Ba0.50[Ag2Cr(C2O4)3]·5H2O with Ag2SO4 in an aqueous solution of sulfuric acid (pH ≈ 3) yielded the silver(I)/chromium(III) oxalate salt H0.50[Ag2.50Cr(C2O4)3]·5H2O (1). Compound 1 can be best described as an anionic silver-deficient oxalatochromate(III) complex [Ag2.50Cr(C2O4)3]0.5- with nanochannels containing hydrogen-bonded water molecules and protons. Thermal analyses show significant weight losses corresponding to the elimination of water molecules of crystallization followed by the decomposition of the network. 展开更多
关键词 Silver-Deficient Oxalatochromate(III) Water-Filled nanochannelS PROTONS Thermal Analysis Crystal Structure
下载PDF
Impacts of multi-foulings on salinity gradient energy conversion process in negatively charged conical nanochannels
10
作者 MAO RuiJie CHEN Xi +3 位作者 ZHOU RuHong LONG Rui LIU ZhiChun LIU Wei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1714-1726,共13页
Membrane fouling inevitably occurs during nanofluidic reverse electrodialysis.Herein,the impact of multi-fouling on the energy conversion performance of negatively charged conical nanochannels under asymmetrical confi... Membrane fouling inevitably occurs during nanofluidic reverse electrodialysis.Herein,the impact of multi-fouling on the energy conversion performance of negatively charged conical nanochannels under asymmetrical configurations is systematically investigated.The results reveal that in Configuration I,where a high-concentration solution is applied at the tip side,at small concentration ratios,multiple foulings reduce the electric power.In Configuration II,where a low-concentration solution is applied at the tip side,multiple foulings near the base side contribute to the electric power.Any fouling that formed near the lowconcentration entrance diminished the electric power and energy conversion efficiency.Multi-fouling lowered the electrical power consumption by 69.27%and 99.94%in Configurations I and II,respectively.In Configuration I,the electric power first increased with increasing fouling surface charge density,reached its maximum value,and thereafter decreased.In Configuration II,the electric power first decreased with increasing fouling surface charge density,reached its minimum value,and thereafter increased.Large negative or positive charge densities of fouling contribute to the electric power and energy conversion efficiency. 展开更多
关键词 conical nanochannel FOULING nanofluidic reverse electrodialysis salinity gradient energy
原文传递
Outer-surface Covering of Nanochannels with Hydrogel for Highly Sensitive and Specific Cr(VI)Detection Through Analyte-caused Charge Change in Hydrogel
11
作者 LIU Huan SUN Xueting +2 位作者 DAI Yu ZHANG Xiaojin XIA Fan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第2期326-332,共7页
Nanochannels have made great progress and are a promising platform for detecting a series of targets.However,most nanochannels are modified on the inner wall,while ignoring the outer surface.Here,we modified the outer... Nanochannels have made great progress and are a promising platform for detecting a series of targets.However,most nanochannels are modified on the inner wall,while ignoring the outer surface.Here,we modified the outer surface of nanochannels with hydrogel.Different from other reported outer-surface modification methods,we directly cover nanochannels with hydrogel to form heterogeneous membrane.The selected hydrogel hardly adsorbs other ions and shows specific adsorption for Cr(VI).The adsorption sites in hydrogel are homogeneous,and Cr(VI)adsorption onto hydrogel is endothermic and spontaneous.The charge in hydrogel changes after Cr(VI)adsorption,and the resulting current changes can be used for the detection of Cr(VI)with the detection limit of 10−11 mol/L.Our platform is expected to be used for Cr(VI)detection in living organisms,especially within cells.This work provides a new approach for outer-surface modification of nanochannels and offers a new choice for nanochannel detection platforms. 展开更多
关键词 nanochannel HYDROGEL Heterogeneous membrane Cr(VI)detection
原文传递
Current progress in glass-based nanochannels
12
作者 Yixin Ling Xuelian Yang +3 位作者 Lei Zhou Zhenkang Lei Yaqi Hou Xu Hou 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期222-237,共16页
Glass-based nanochannels have become powerful tools for chemi-cal and biological sensing due to their advantages of easy prepara-tion,flexible modification,and high sensitivity.Lately,research on ion transport behavio... Glass-based nanochannels have become powerful tools for chemi-cal and biological sensing due to their advantages of easy prepara-tion,flexible modification,and high sensitivity.Lately,research on ion transport behaviors in glass-based nanochannels and their applications in nanofluidic iontronics has gradually become a focus,including various ion transport behaviors such as resistive-pulse,ion rectification,ionic current memory,etc.In this review,we summarize the progress of manufacturing methods for glass-based nanochannels and discuss several typical ion transport behaviors of glass-based nanochannels,as well as the main application scenarios of glass-based nanochannels in terms of biosensing,detection,and neuromorphic functions.The enormous assistance of artificial intel-ligence in the standardized manufacturing process of glass-based nanochannels was anticipated,and the potential development of glass-based nanochannels in achieving neuromorphic functions was expected. 展开更多
关键词 Glass-based nanochannels biosensing ionic rectification ionic memristive effect nanofluidic neuromorphic functions
下载PDF
Nanochannels with a 18-nm feature size and ultrahigh aspect ratio on silica through surface assisting material ejection
13
作者 Yu Lu Lin Kai +6 位作者 Caiyi Chen Qing Yang Yizhao Meng Yi Liu Yang Cheng Xun Hou Feng Chen 《Advanced Photonics Nexus》 2022年第2期45-51,共7页
.Nanochannel structures with a feature size deeply under the diffraction limit and a high aspect ratio hold huge biomedical significance,which is especially challenging to be realized on hard and brittle materials,suc... .Nanochannel structures with a feature size deeply under the diffraction limit and a high aspect ratio hold huge biomedical significance,which is especially challenging to be realized on hard and brittle materials,such as silica,diamond,and sapphire.By simultaneously depositing the pulse energy on the surface and inside the sample,nanochannels with the smallest feature size of 18 nm(∼1∕30λ)and more than 200 aspect ratios are achieved inside silica,the mechanism of which can be concluded as the surface assisting material ejection effect.Both the experimental and theoretical results prove that the coaction of the superficial“hot domain”and internal hot domain dominates the generation of the nanochannels,which gives new insights into the laser-material interacting mechanisms and potentially promotes the corresponding application fields. 展开更多
关键词 femtosecond laser direct writing nanochannels spatially shaping surface assisting material ejection
下载PDF
Nanopores/Nanochannels Based on Electrical and Optical Dual Signal Response for Application in Biological Detection 被引量:1
14
作者 Guangwen Lu Niya Lin +4 位作者 Zhaojun Chen Wenlian Jiang Jing-Jing Hu Fan Xia Xiaoding Lou 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第11期1374-1384,共11页
Cancers and chronic diseases have always been global health problems. The occurrence and development of such diseases are closely related to the abnormalities of proteins, nucleic acids, ions or small molecules in the... Cancers and chronic diseases have always been global health problems. The occurrence and development of such diseases are closely related to the abnormalities of proteins, nucleic acids, ions or small molecules in the body. Nowadays, nanopores/nanochannels have emerged as a powerful platform for detecting these biomolecules based on the electrical signal variation caused by biomolecules passing. However, detection relied on the electrical signal easily suffered from the clogging defects, low throughput, and strong background signals. Fortunately, the emergence of designing nanopores/nanochannels based on electrical and optical dual signal response has brought innovative impetus to biological detection, which can also identify the chemical compositions and conformations of the biomolecules. In this review, we summarize the reasonable preparation of nanopores/nanochannels with electrical and optical dual signal response and their application in biological detection. According to different biomolecules, we divide the targets into four types, including nucleic acids, small molecules, ions and proteins. In each section, the design of representative examples and the principle of dual signal generation are introduced and discussed. Finally, the prospects and challenges of nanopores/nanochannels based on electrical and optical dual signal response are also discussed. 展开更多
关键词 Biomolecules NANOPORES nanochannelS Electrical and optical Fluorescence lon current
原文传递
Water’s motions in x–y and z directions of 2D nanochannels:Entirely different but tightly coupled
15
作者 Shouwei Liao Qia Ke +1 位作者 Yanying Wei Libo Li 《Nano Research》 SCIE EI CSCD 2023年第5期6298-6307,共10页
Two-dimensional(2D)material-based membrane separation has attracted increasing attention due to its promising performance compared with traditional membranes.However,in-depth understanding of water transportation beha... Two-dimensional(2D)material-based membrane separation has attracted increasing attention due to its promising performance compared with traditional membranes.However,in-depth understanding of water transportation behavior in such confined nanochannels is still lacking,which hinders the development of 2D nanosheets membranes.Herein,we investigated water confined in graphene or MoS_(2)nanochannels by molecular dynamics(MD)simulations and found water’s diffusivity always varied linearly with their mean square displacement along z direction(Δz^(2))when system variables(e.g.,water molecules’number,channel height,nonbonded interaction parameter,harmonic potential constraining water’s z-coordinate)changed.Such linear correlation applies to different water models and different force fields(FFs)of channel walls(e.g.,different Lennard–Jones parameters or even flexible FF),no matter whether water molecules form 3-,2-,or quasi-2-layer structure in the nanochannel.This indicates,though water molecules’motion along z direction(z-fluctuation,confined within 1 nm)and that in xy plane(xydiffusion)are entirely different,they are tightly coupled:Violent z-fluctuation would produce more transient void to facilitate xydiffusion,which is to the sharp contrary of bulk water,where motions in x,y,z directions are symmetric,but independent.Our work could help design high performance 2D nanochannels and discover more novel principles in nano-fluidics and membrane separation fields. 展开更多
关键词 graphene membranes nanochannel nanofluidics water diffusion
原文传递
Construction and application of bioinspired nanochannels based on two-dimensional materials 被引量:1
16
作者 Jinlin Hao Weijie Wang +3 位作者 Jiawei Zhao Honglin Che Lu Chen Xin Sui 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第5期2291-2300,共10页
With the development of nanotechnology and materials science,bioinspired nanochannels appeared by mimicking the intelligent functions of biological ion channels.They have attracted a great deal of at-tention in recent... With the development of nanotechnology and materials science,bioinspired nanochannels appeared by mimicking the intelligent functions of biological ion channels.They have attracted a great deal of at-tention in recent years due to their controllable structure and tunable chemical properties.Inspired by the layered microstructure of nacre,2D layered materials as excellent matrix material of nanochannel come into our field of vision.Bionic nanochannels based on 2D materials have the advantages of facile preparation,tunable channel size and length,easy expansion,and modification,etc.Therefore,the 2D layered nanofluid system based on bionic nanochannels from 2D layered materials has great potential in biomimetic microsensors,membrane separations,energy conversion,and so on.In this paper,we focus on the construction and application of bionic nanochannels based on 2D layer materials.First,a basic understanding of nanochannels based on 2D materials is briefly introduced,we also present the property of the 2D materials and construction strategies of bionic nanochannels.Subsequently,the application of these nanochannels in responsive channels and energy conversion is discussed.The unsolved challenges and prospects of 2D materials-based nanochannels are proposed in the end. 展开更多
关键词 Bioinspired nanochannels 2D material Layered structure Energy conversion Responsive nanochannels
原文传递
不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟
17
作者 邢赫威 陈占秀 +3 位作者 杨历 苏瑶 李源华 呼和仓 《物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期168-178,共11页
随着电子元件高性能化和小型化的发展,纳米通道内工质的流动传热问题受到了更多的关注.本文采用分子动力学模拟方法,模拟了300,325,350 K的纳米通道中流体的流动传热情况,工质为水,水中不凝性气体用氩气代替.结果表明:流动过程中,氩原... 随着电子元件高性能化和小型化的发展,纳米通道内工质的流动传热问题受到了更多的关注.本文采用分子动力学模拟方法,模拟了300,325,350 K的纳米通道中流体的流动传热情况,工质为水,水中不凝性气体用氩气代替.结果表明:流动过程中,氩原子形成高势能团簇,随着温度升高,流体势能上升,团簇逐渐减小或消失;少量气体原子能够促进流动,而较多氩气会导致通道中心区域形成较大气体团簇而阻碍流动,同时,被加热的工质能显著减小流动阻力系数;近壁面区域流体温度高于中心区域,团簇内部原子活动更加剧烈,平均分子动能更大,温度更高;水的氢键结构可以促进纳米通道内的传热,氩原子会影响氢键数量,高温会破坏水分子形成的氢键网络,使努塞尔数下降.本研究分析了不凝性气体影响下微通道内水分子流动传热的机理,为电子设备的强化传热提供了理论指导. 展开更多
关键词 分子动力学 流动传热 团簇 纳米通道
下载PDF
石英纳米孔中氦气与甲烷竞争扩散的分子模拟
18
作者 刘晓强 尤兵 +5 位作者 陈践发 肖洪 李美俊 罗情勇 彭缇 樊一飞 《长江大学学报(自然科学版)》 2024年第3期86-94,共9页
氦气具有尺寸小、扩散和渗透能力强等特点,其独特的物理性质严重制约了氦气的聚集成藏。因此,深入揭示地质条件下氦气与甲烷的竞争扩散规律,是系统认识富氦天然气成藏机制的重要途径。首次采用分子模拟技术,构建了石英纳米狭缝-通道孔... 氦气具有尺寸小、扩散和渗透能力强等特点,其独特的物理性质严重制约了氦气的聚集成藏。因此,深入揭示地质条件下氦气与甲烷的竞争扩散规律,是系统认识富氦天然气成藏机制的重要途径。首次采用分子模拟技术,构建了石英纳米狭缝-通道孔复合模型,探索了甲烷与氦气的混合气体在模型中的竞争扩散规律。分子模拟结果表明,甲烷对氦气的扩散有抑制作用,并且甲烷对吸附态氦气有较强的驱替能力;当氦气在混合气体中摩尔分数达90%时,游离态的氦分子可聚合形成直径更大的氦团簇,氦团簇的出现对氦气存储以及储氦库建设具有一定的启示。此外,当扩散通道孔的直径小于甲烷和氦气的动力学直径2倍时,甲烷和氦气无法从石英纳米通道扩散出去,此时分子间的排斥力很强,将阻止气体分子的进一步逸散,有利于氦气保存。研究结果提供了在原子分子水平下氦气与甲烷在石英纳米孔中的竞争逸散规律,为氦气的富集和保存机制研究提供了有用信息,并为氦气资源的勘探与开发提供了参考依据。 展开更多
关键词 氦气 甲烷 竞争扩散 狭缝孔 纳米通道 分子模拟
下载PDF
Biomimetic smart nanochannels for power harvesting 被引量:3
19
作者 Ganhua Xie Liping Wen Lei Jiang 《Nano Research》 SCIE EI CAS CSCD 2016年第1期59-71,共13页
With the increasing requirements of reliable and environmentally friendly energy resources, porous materials for sustainable energy conversion technologies have attracted intensive interest in the past decades. As an ... With the increasing requirements of reliable and environmentally friendly energy resources, porous materials for sustainable energy conversion technologies have attracted intensive interest in the past decades. As an important block of porous materials, biomimetic smart nanochannels (BSN) have been developed rapidly into an attractive field for their well-tunable geometry and chemistry. With inspiration from nature, many works have been reported to utilize BSN to harvest clean energy. In this review, we summarize recent progress in the BSN for power harvesting from four parts of brief introduction of BSN, biological prototypes for power harvesting, BSN-based energy conversion, and conclusion and outlook. Overall, by learning from nature, exploiting new avenues and improving the performance of BSN, a number of exciting developments in the near future may be anticipated. 展开更多
关键词 energy conversion BIOMIMETIC nanochannel PHOTOELECTRIC salinity gradient
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部