期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Color Restoration Method Based on Spectral Information Using Normalized Cut
1
作者 Tetsuro Morimoto Tohru Mihashi Katsushi Ikeuchi 《International Journal of Automation and computing》 EI 2008年第3期226-233,共8页
This paper proposes a novel method for color restoration that can effectively apply accurate color based on spectral information to a segmented image using the normalized cut technique. Using the proposed method, we c... This paper proposes a novel method for color restoration that can effectively apply accurate color based on spectral information to a segmented image using the normalized cut technique. Using the proposed method, we can obtain a digital still camera image and spectral information in different environments. Also, it is not necessary to estimate reflectance spectra using a spectral database such as other methods. The synthesized images are accurate and high resolution. The proposed method effectively works in making digital archive contents. Some experimental results are demonstrated in this paper. 展开更多
关键词 Spectral information normalized cut digital archive contents digital still camera (DSC) spectrometer.
下载PDF
BP神经网络在图像语义自动标注的应用 被引量:1
2
作者 伍宇花 《电脑知识与技术(过刊)》 2011年第5X期3399-3400,3404,共3页
由于传统的基于内容图像检索存在的"语义鸿沟"问题,其在某些特定的领域无法满足用户的需求。图像语义自动标注的出现能够有效地解决这方面的问题。该文提出了先使用Normalized Cuts方法对图像进行区域分割并提取出每个区域的... 由于传统的基于内容图像检索存在的"语义鸿沟"问题,其在某些特定的领域无法满足用户的需求。图像语义自动标注的出现能够有效地解决这方面的问题。该文提出了先使用Normalized Cuts方法对图像进行区域分割并提取出每个区域的低层视觉特征,再利用BP神经网络算法来学习图像区域和标注字的对应关系来进行图像语义的自动标注的方法,实验结果证明了此方法的有效性和准确性。 展开更多
关键词 图像标注 BP神经网络 normalized cuts 图像低层特征
下载PDF
基于内容的多层次语义视频对象提取方法研究
3
作者 李春燕 杨树堂 陆松年 《信息技术》 2008年第9期31-34,共4页
视频对象的提取在序列图像的分析中起着重要作用。提出一个基于内容的多层次视频的对象提取算法,利用高斯马尔可夫模型对其进行颜色和纹理的混合特征图像分割。利用Normalize-cut准则,对其运动信息进行分析,然后进行区域聚合,即得到具... 视频对象的提取在序列图像的分析中起着重要作用。提出一个基于内容的多层次视频的对象提取算法,利用高斯马尔可夫模型对其进行颜色和纹理的混合特征图像分割。利用Normalize-cut准则,对其运动信息进行分析,然后进行区域聚合,即得到具有语义的视频对象。对于背景运动信息较丰富的序列图像可以取得良好的提取效果。 展开更多
关键词 基于内容的分割和聚合 视频对象分割 高斯马尔可夫模型 Normalize—cut准则
下载PDF
Automatic 3D Shape Co-Segmentation Using Spectral Graph Method 被引量:1
4
作者 雷浩鹏 罗笑南 +1 位作者 林淑金 盛建强 《Journal of Computer Science & Technology》 SCIE EI CSCD 2013年第5期919-928,F0003,共11页
Co-analyzing a set of 3D shapes is a challenging task considering a large geometrical variability of the shapes. To address this challenge, this paper proposes a new automatic 3D shape co-segmentation algorithm by usi... Co-analyzing a set of 3D shapes is a challenging task considering a large geometrical variability of the shapes. To address this challenge, this paper proposes a new automatic 3D shape co-segmentation algorithm by using spectral graph method. Our method firstly represents input shapes as a set of weighted graphs and extracts multiple geometric features to measure the similarities of faces in each individual shape. Secondly all graphs are embedded into the spectral domain to find meaningful correspondences across the set, After that we build a joint weighted matrix for the graph set and then apply normalized cut criterion to find optimal co-segmentation of the input shapes. Finally we evaluate our approach on different categories of 3D shapes, and the experimental results demonstrate that our method can accurately co-segment a wide variety of shapes, which may have different poses and significant topology changes. 展开更多
关键词 shape co-segmentation shape matching spectral graph normalized cut
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部