On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of ...On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB-H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.04-1.84 k J/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.展开更多
By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2...By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered, Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.展开更多
Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density func...Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density functional theory(DFT)(B3LYP,B3PW91,B3P86,PBE1PBE) and the complete basis set(CBS-Q) method in conjunction with the 6311G^** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work.Comparisons between the computational results and the experimental values reveal that CBS-Q method,which can produce reasonable BDEs for some systems in our previous work,seems unable to predict accurate BDEs here.However,the B3P86 calculated results accord very well with the experimental values,within an average absolute error of 2.3 kcal/mol.Thus,B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds.In addition,the energy gaps between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of studied compounds are estimated,based on which the relative thermal stabilities of the studied acids are also discussed.展开更多
Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B...Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31g^** and 6-311g^** basis sets. The computed BDEs have been compared with the available experimental results. It is found that the B3P86 method with 6-31g^** and 6-311g^** basis sets can obtain satisfactory bond dissociation energies (BDEs), which are in extraordinary agreement with the experimental data. Considering the smaller mean absolute deviation and maximum difference, the reliable B3P86/6-311g^** method was recommended to compute the BDEs for the removal of nitrogen dioxide group in the nitroalkane energetic materials. Using the method, the BDEs of 8 other nitroalkane energetic materials have been calculated and the maximum difference from experimental value is 1.76 kcal.mo1^-1 (for the BDE of tC4Hg-NOz), which further proves the reliability of B3P86/6-311g^** method. In addition, it is noted that the BDEs of C-NO2 bond change slightly for main chain nitroalkane compounds with the maximum difference of only 3.43 kcal mo1^-1.展开更多
The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing t...The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.展开更多
Bond dissociation energy(BDE),which refers to the enthalpy change for the homolysis of a specific covalent bond,is one of the basic thermodynamic properties of molecules.It is very important for understanding chemical...Bond dissociation energy(BDE),which refers to the enthalpy change for the homolysis of a specific covalent bond,is one of the basic thermodynamic properties of molecules.It is very important for understanding chemical reactivities,chemical properties and chemical transformations.Here,a machine learning-based comprehensive BDE prediction model was established based on the iBonD experimental BDE dataset and the calculated BDE dataset by St.John et al.Differential Structural and PhysicOChemical(D-SPOC)descriptors that reflected changes in molecules'structural and physicochemical features in the process of bond homolysis were designed as input features.展开更多
The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In com...The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship bt tween O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE.展开更多
Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between ...Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between logarithm of free radical scavenging rate constants (1gks) and E-HOMO substantially arises from the correlation between E-HOMO and O-H bond dissociation energies (BDE) of antioxidants. Furthermore, E-HOMO were poorly correlated with the logarithm of relative free radical scavenging rate constants (1gk(3)/k(1)) for various types of antioxidants that possess complex structures (r = 0.5602). So in a broad sense, E-HOMO was not an appropriate parameter to characterize the free radical scavenging activity of antioxidants.展开更多
The question "why are the variation trends of R-X bond dissociation energy different?" is answered. The R-X bond dissociation energy (BDE) may be influenced by three main factors: the C-X intrinsic bond ener...The question "why are the variation trends of R-X bond dissociation energy different?" is answered. The R-X bond dissociation energy (BDE) may be influenced by three main factors: the C-X intrinsic bond energy, the 1,3 geminal repulsion, and the intramolecular charge-induced dipole. In the presence of atom X, the variation trend of BDE in R-X (R= Me, Et, i-Pr, t-Bu) is dominated by two factors, the 1,3 geminal repulsion and the intramolecular charge-induced dipole. The former decreases the R-X BDE, and the latter either increases or decreases the R-X BDE. For the series of R-X with the R-C bond (such as R-Me, R-CH == CH2, R-C≡CH, and R-CN), the 1,3 geminal repulsion decreases the R-X BDE, and the variation trends of R-C BDE decrease from Me to t-Bu. As regards the series of R-X (such as R-H, R-BH2, and R-SiH2) in which the electronegativity of atom X is smaller than that of the carbon atom, the above two factors decrease the R-X BDE, and the variation trends of the R-X BDE decrease from Me to t-Bu. As to the series of R-X (such as R-F, R-OH, R-Cl, R-Br, R-I, and R-NH2) in which the electronegativity of atom X is larger than that of the carbon atom, the 1,3 geminal repulsion decreases the R-X BDE, while the intramolecular charge-induced dipole increases the R-X BDE. In this case, the variation trends of R-X BDE depend on the competition of the two factors. As a result, some of them (e. g., R-F, R-OH) increase from Me to t-Bu, some (e. g., R-I) decrease from Me to t-Bu, and some (e. g., R-Br) change very little.展开更多
In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at U...In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311 + +g(2df,2p)//UB3LYP/6-31 +g(d) level. It was found that the substituents exerted similar effects on the X-H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ^+) of 2- and 6-Y-CIoHsX-H (X=NH and O only) varied violently. The origin of the substituent effects on the X-H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net. substituent effects.展开更多
The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the ...The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.展开更多
It is well known that the reaction pattern and reactivity of Ylides are related to thestabilities of the corresponding organic anions and therefore to the pK_a values of theirprecursor molecules. However, water, the m...It is well known that the reaction pattern and reactivity of Ylides are related to thestabilities of the corresponding organic anions and therefore to the pK_a values of theirprecursor molecules. However, water, the most commonly used medium for deriving theacidities for most inorganic acids, is not a good solvent for determining the pK_a’s of展开更多
CBS-Q and G3 methods were used to generate a large number of reliable Si--H, P---H and S--H bond dissociation energies (BDEs) for the first time. It was found that the Si--H BDE displayed dramatically different subs...CBS-Q and G3 methods were used to generate a large number of reliable Si--H, P---H and S--H bond dissociation energies (BDEs) for the first time. It was found that the Si--H BDE displayed dramatically different substituent effects compared with the C--H BDE. On the other hand, the P---H and S--H BDE exhibited patterns of substituent effects similar to those of the N--H and O--H BDE. Further analysis indicated that increasing the positive charge on Si of XSiH3 would strengthen the Si--H bond whereas increasing the positive charge on P and S of XPH2 and XSH would weaken the P---H and S--H bonds. Meanwhile, increasing the positive charge on Si of XSiH2^+ stabilized the silyl radical whereas increasing the positive charge on P and S in XPH" and XS* destabilized P- and S-centered radicals. These behaviors could be reasonalized by the fact that Si is less electronegative than H while P and S are not. Finally, it was demonstrated that the spin-delocalization effect was valid for the Si-, P- and S-centered radicals.展开更多
Heterolytic and homolytic C D bond dissociation energies of three NADH models: BNAH-4,4-d 2 , HEH-4,4-d 2 and AcrD 2 in acetonitrile were first estimated by using an efficient method. The results showed that the heter...Heterolytic and homolytic C D bond dissociation energies of three NADH models: BNAH-4,4-d 2 , HEH-4,4-d 2 and AcrD 2 in acetonitrile were first estimated by using an efficient method. The results showed that the heterolytic C D bond dissociation energies are 65.2, 70.2, and 81.9 kcal/mol and the homolytic C D bond dissociation energies are 72.66, 70.69, and 74.95 kcal/mol for BNAH-4,4-d 2 , HEH-4,4-d 2 , and AcrD 2 , respectively. According to the bond dissociation energy differences of isotope isomers, an interesting conclusion can be made that the primary kinetic isotope effects are dependent not only on the zero-point energy difference of the isotope isomers, but also on the types of C D bond dissociations, and the C D bond homolytic dissociations should have much larger primary kinetic isotope effects (26.9 28.8) than the corresponding C D bond heterolytic dissociations (3.9-5.4).展开更多
With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated...With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated through the logical method of establishing an accurate mechanical equilibrium equation describing the molecular structure, then solving the strict solutions of this mechanical equation and the corresponding wave equation. The results (bond length and dissociation energy) are in good agreement with observed results—i.e. if it is only coincidence, there should not be such a high probability of agreement between calculated and observed results. The method of local realism quantum mechanics is no longer the semi-empirical method. The method to calculate the electron pairing energy uses a linear regression of the ionization energy obtained through experiment. Nonetheless, it is exciting that there are diatomic molecules such as Na2, K2 and asymmetric HF molecules that possess a non-zero non-bonding electron number in the calculation examples. Moreover, the molecular structures are very intuitive, and the calculation method is much simpler than existing methods.展开更多
文摘On basis of bond dissociation energies (BDEs) for BH2, B(OH)2, BCl2, and BCl, the diffusion Monte Carlo (DMC) method is applied to explore the BDEs of HB-H, HOB-OH, ClB-Cl, and B-Cl. The effect of the choice of orbitals, as well as the backflow transformation, is studied. The Slater-Jastrow DMC algorithm gives BDEs of 359.1±0.12 kJ/mol for HB-H, 410.5±0.50 kJ/mol for HOB-OH, 357.8±1.46 kJ/mol for ClB-Cl, and 504.5±0.96 kJ/mol for B-Cl using B3PW91 orbitals and similar BDEs when B3LYP orbitals are used. DMC with backflow corrections (BF-DMC) gives a HB-H BDE of 369.9±0.12 kJ/mol which is close to one of the available experimental value (375.8 kJ/mol). In the case of HOB-OH BDE, the BF-DMC calculation is 446.04-1.84 k J/mol that is closer to the experimental BDE. The BF-DMC BDE for ClB-Cl is 343.2±2.34 kJ/mol and the BF-DMC B-Cl BDE is 523.3±0.33 kJ/mol, which are close to the experimental BDEs, 341.9 and 530.0 kJ/mol, respectively.
基金Project supported by the National Natural Science Foundation of China and China Academy of Engineering Physics (Grant Nos 10376021, 10274055).
文摘By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq, and CBS-4M)ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered, Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11047176)the Research Foundation of Education Bureau of Hubei Province,China (Grant Nos. Q20111305,B20101303,T201204,B20111304,and Q20091215)
文摘Quantum chemical calculations are performed to investigate the equilibrium C-COOH bond distances and the bond dissociation energies(BDEs) for 15 acids.These compounds are studied by utilizing the hybrid density functional theory(DFT)(B3LYP,B3PW91,B3P86,PBE1PBE) and the complete basis set(CBS-Q) method in conjunction with the 6311G^** basis as DFT methods have been found to have low basis sets sensitivity for small and medium molecules in our previous work.Comparisons between the computational results and the experimental values reveal that CBS-Q method,which can produce reasonable BDEs for some systems in our previous work,seems unable to predict accurate BDEs here.However,the B3P86 calculated results accord very well with the experimental values,within an average absolute error of 2.3 kcal/mol.Thus,B3P86 method is suitable for computing the reliable BDEs of C-COOH bond for carboxylic acid compounds.In addition,the energy gaps between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of studied compounds are estimated,based on which the relative thermal stabilities of the studied acids are also discussed.
基金The project was supported by the National Natural Science Foundation of China (No. 10574096 and 10676025)
文摘Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31g^** and 6-311g^** basis sets. The computed BDEs have been compared with the available experimental results. It is found that the B3P86 method with 6-31g^** and 6-311g^** basis sets can obtain satisfactory bond dissociation energies (BDEs), which are in extraordinary agreement with the experimental data. Considering the smaller mean absolute deviation and maximum difference, the reliable B3P86/6-311g^** method was recommended to compute the BDEs for the removal of nitrogen dioxide group in the nitroalkane energetic materials. Using the method, the BDEs of 8 other nitroalkane energetic materials have been calculated and the maximum difference from experimental value is 1.76 kcal.mo1^-1 (for the BDE of tC4Hg-NOz), which further proves the reliability of B3P86/6-311g^** method. In addition, it is noted that the BDEs of C-NO2 bond change slightly for main chain nitroalkane compounds with the maximum difference of only 3.43 kcal mo1^-1.
基金The project was supported by the National Natural Science Foundation of China (No. 10774039)
文摘The N-NO2 bond dissociation energies (BDEs) for 7 energetic materials were computed by means of accurate density functional theory (B3LYP, B3PW91 and B3P86) with 6-31G** and 6-311G** basis sets. By comparing the computed energies and experimental results, we find that the B3P86/6-311G** method can give good results of BDE, which has the mean absolute deviation of 1.30kcal/mol. In addition, substituent effects were also taken into account. It is noted that the Hammett constants of substituent groups are related to the BDEs of the N-NO2 bond and the bond dissociation energies of the energetic materials studied decrease when increasing the number of NO2 group.
基金the National Natural Science Foundation of China(22373056,22031006,22393891)the National Key R&D Program of China(2023YFA1506402)+1 种基金the National Science&Technology Fundamental Resource Investigation Program of China(2018FY201200)Haihe Laboratory of Sustainable Chemical Transformations for financial support.L.Z.is supported by the National Program of Top-notchYoung Professionals.
文摘Bond dissociation energy(BDE),which refers to the enthalpy change for the homolysis of a specific covalent bond,is one of the basic thermodynamic properties of molecules.It is very important for understanding chemical reactivities,chemical properties and chemical transformations.Here,a machine learning-based comprehensive BDE prediction model was established based on the iBonD experimental BDE dataset and the calculated BDE dataset by St.John et al.Differential Structural and PhysicOChemical(D-SPOC)descriptors that reflected changes in molecules'structural and physicochemical features in the process of bond homolysis were designed as input features.
文摘The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship bt tween O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE.
文摘Semiempirical quantum chemical method AM1 was employed to calculate the highest occupied molecular orbital (HOMO) energy levels (E-HOMO) for various types of antioxidants. It was verified that the correlation between logarithm of free radical scavenging rate constants (1gks) and E-HOMO substantially arises from the correlation between E-HOMO and O-H bond dissociation energies (BDE) of antioxidants. Furthermore, E-HOMO were poorly correlated with the logarithm of relative free radical scavenging rate constants (1gk(3)/k(1)) for various types of antioxidants that possess complex structures (r = 0.5602). So in a broad sense, E-HOMO was not an appropriate parameter to characterize the free radical scavenging activity of antioxidants.
基金Supported by the National Natural Science Foundation of China (Grant No. 20772028)the Natural Science Foundation of Hunan Province (Grant No. 06JJ2002)Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology
文摘The question "why are the variation trends of R-X bond dissociation energy different?" is answered. The R-X bond dissociation energy (BDE) may be influenced by three main factors: the C-X intrinsic bond energy, the 1,3 geminal repulsion, and the intramolecular charge-induced dipole. In the presence of atom X, the variation trend of BDE in R-X (R= Me, Et, i-Pr, t-Bu) is dominated by two factors, the 1,3 geminal repulsion and the intramolecular charge-induced dipole. The former decreases the R-X BDE, and the latter either increases or decreases the R-X BDE. For the series of R-X with the R-C bond (such as R-Me, R-CH == CH2, R-C≡CH, and R-CN), the 1,3 geminal repulsion decreases the R-X BDE, and the variation trends of R-C BDE decrease from Me to t-Bu. As regards the series of R-X (such as R-H, R-BH2, and R-SiH2) in which the electronegativity of atom X is smaller than that of the carbon atom, the above two factors decrease the R-X BDE, and the variation trends of the R-X BDE decrease from Me to t-Bu. As to the series of R-X (such as R-F, R-OH, R-Cl, R-Br, R-I, and R-NH2) in which the electronegativity of atom X is larger than that of the carbon atom, the 1,3 geminal repulsion decreases the R-X BDE, while the intramolecular charge-induced dipole increases the R-X BDE. In this case, the variation trends of R-X BDE depend on the competition of the two factors. As a result, some of them (e. g., R-F, R-OH) increase from Me to t-Bu, some (e. g., R-I) decrease from Me to t-Bu, and some (e. g., R-Br) change very little.
基金Project supported by the National Natural Science Foundation of China (No. 20472079) and Anhui Provincial Natural Science Faundation (No 070416237).
文摘In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311 + +g(2df,2p)//UB3LYP/6-31 +g(d) level. It was found that the substituents exerted similar effects on the X-H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ^+) of 2- and 6-Y-CIoHsX-H (X=NH and O only) varied violently. The origin of the substituent effects on the X-H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net. substituent effects.
文摘The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.
基金Project supported by the National Natural Science Foundation of China and the Fund for Excellent Young University Teachers,SEDC.China.
文摘It is well known that the reaction pattern and reactivity of Ylides are related to thestabilities of the corresponding organic anions and therefore to the pK_a values of theirprecursor molecules. However, water, the most commonly used medium for deriving theacidities for most inorganic acids, is not a good solvent for determining the pK_a’s of
基金Project supported by the National Natural Science Foundation of China (No. 200332020).
文摘CBS-Q and G3 methods were used to generate a large number of reliable Si--H, P---H and S--H bond dissociation energies (BDEs) for the first time. It was found that the Si--H BDE displayed dramatically different substituent effects compared with the C--H BDE. On the other hand, the P---H and S--H BDE exhibited patterns of substituent effects similar to those of the N--H and O--H BDE. Further analysis indicated that increasing the positive charge on Si of XSiH3 would strengthen the Si--H bond whereas increasing the positive charge on P and S of XPH2 and XSH would weaken the P---H and S--H bonds. Meanwhile, increasing the positive charge on Si of XSiH2^+ stabilized the silyl radical whereas increasing the positive charge on P and S in XPH" and XS* destabilized P- and S-centered radicals. These behaviors could be reasonalized by the fact that Si is less electronegative than H while P and S are not. Finally, it was demonstrated that the spin-delocalization effect was valid for the Si-, P- and S-centered radicals.
基金support from the National Natural Science Foundation of China(21072104, 20921120403 and 20832004)the National Basic Research Program of China (2004CB719905)the 111 Project (B06005) is gratefully acknowledged
文摘Heterolytic and homolytic C D bond dissociation energies of three NADH models: BNAH-4,4-d 2 , HEH-4,4-d 2 and AcrD 2 in acetonitrile were first estimated by using an efficient method. The results showed that the heterolytic C D bond dissociation energies are 65.2, 70.2, and 81.9 kcal/mol and the homolytic C D bond dissociation energies are 72.66, 70.69, and 74.95 kcal/mol for BNAH-4,4-d 2 , HEH-4,4-d 2 , and AcrD 2 , respectively. According to the bond dissociation energy differences of isotope isomers, an interesting conclusion can be made that the primary kinetic isotope effects are dependent not only on the zero-point energy difference of the isotope isomers, but also on the types of C D bond dissociations, and the C D bond homolytic dissociations should have much larger primary kinetic isotope effects (26.9 28.8) than the corresponding C D bond heterolytic dissociations (3.9-5.4).
文摘With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated through the logical method of establishing an accurate mechanical equilibrium equation describing the molecular structure, then solving the strict solutions of this mechanical equation and the corresponding wave equation. The results (bond length and dissociation energy) are in good agreement with observed results—i.e. if it is only coincidence, there should not be such a high probability of agreement between calculated and observed results. The method of local realism quantum mechanics is no longer the semi-empirical method. The method to calculate the electron pairing energy uses a linear regression of the ionization energy obtained through experiment. Nonetheless, it is exciting that there are diatomic molecules such as Na2, K2 and asymmetric HF molecules that possess a non-zero non-bonding electron number in the calculation examples. Moreover, the molecular structures are very intuitive, and the calculation method is much simpler than existing methods.