An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and...An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.展开更多
The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic gr...The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.展开更多
AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anteri...AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.展开更多
The density distribution of a supersonic turbulent boundary layer is measured with the nanoparticle-based planar laser scattering technique, and the temporal evolution of its optical path difference (OPD) in a short...The density distribution of a supersonic turbulent boundary layer is measured with the nanoparticle-based planar laser scattering technique, and the temporal evolution of its optical path difference (OPD) in a short time interval is characterized by proper orthogonal decomposition (POD). Based on the advantage of POD in capturing the energy of a signal, a temporal evolution model is suggested for the POD coefficients of the OPD. In this model, the first few coefficients vary linearly with time, and the others are modeled by Gaussian statistics. As an application, this method is used to compute the shortexposure optical transfer function.展开更多
We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF).The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear...We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF).The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method.The differentiation of the ESF yields the line spread function (LSF),the Fourier transform of which gives the profile of two-dimensional MTF.Compared with the previous methods,the MTF estimate determined by our method conforms more closely to the reference.A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.展开更多
A new phase-correction method in a realistic loss superlens imaging system is theoretically predicted. The image resolution is enhanced using the near-field active phase-correction method. Resolvable separation betwee...A new phase-correction method in a realistic loss superlens imaging system is theoretically predicted. The image resolution is enhanced using the near-field active phase-correction method. Resolvable separation between two slits has been significantly improved to λ/20 for the symmetrical superlens system and λ/12 for unsymmetrical system.展开更多
Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology.With the development of...Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology.With the development of dielectric metasurfaces of different geometries and resonance mechanisms,diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures.This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first-and second-order spatial differentiators realized via the Green's function approach.The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer flinctions of metasurfaces for different incident wavevectors and polarizations.To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition,edge detection is described to illustrate the practicability of the device.As an application example,experimental demonstrations of edge detection for different biological cells and a flower mold are discussed,in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations.The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.展开更多
A 5-bit photonic analog-to-digital conversion under a sampling rate of 10 Gs/s is experimentally demon- strated. In the experiment, the birefringence walk-off in the scheme is compensated, and 16 high-extinction ratio...A 5-bit photonic analog-to-digital conversion under a sampling rate of 10 Gs/s is experimentally demon- strated. In the experiment, the birefringence walk-off in the scheme is compensated, and 16 high-extinction ratio optical transfer functions with different phase shifts are obtained. A I-GHz sinusoidal analog signal is sampled and Quantized by optical processing, and the effective number of bits obtained is 4.17.展开更多
Wavefront coding (WFC) is used to extend the field depth of an incoherent optical system by employing a phase mask on the pupil. We uses a Fisher information (FI) metric based optimization method to design a phase...Wavefront coding (WFC) is used to extend the field depth of an incoherent optical system by employing a phase mask on the pupil. We uses a Fisher information (FI) metric based optimization method to design a phase mask by taking the modulation transfer function (MTF) of the practical optical system into consid- eration. This method can modulate the wavefront so that the point spread function and optical transfer function are insensitive to the object distance. The simulation results show that the optimized phase mask based on the proposed method can further improve the defocusing image quality while maintaining the focusing image quality.展开更多
Convolution kernel-based non-uniform fast Fourier transform (NUFFT) is an effective image reconstruction method for Fourier domain optical coherence tomography. By measuring the reconstruction error, a general metho...Convolution kernel-based non-uniform fast Fourier transform (NUFFT) is an effective image reconstruction method for Fourier domain optical coherence tomography. By measuring the reconstruction error, a general method for finding the optimal parameters of the kernel function is investigated. Performances in terms of point spread function and computation time are evaluated. The NUFFT with optimal parameters yields signal sensitivity of over 40 dB, with a computation time that is decreased by 85% compared with the conventional oversampling NUFFT. In vivo images of finger tissue are efficiently reconstructed through the proposed reconstruction method.展开更多
The active control of 30-m ring interferometric telescope (RIT) needs edge sensing and tip sensing when its primary mirror is composed by trapezoid-shaped segments, and the imaging performance of the RIT is determin...The active control of 30-m ring interferometric telescope (RIT) needs edge sensing and tip sensing when its primary mirror is composed by trapezoid-shaped segments, and the imaging performance of the RIT is determined by the accuracy of these two detecting approaches. Considering the detecting accuracy available in current segmented telescope active control systems, the effect of these detecting approaches on the surface error of the RIT primary mirror is calculated from the point of error propagation. The corresponding effect on imaging performance (modulation transfer functions (MTFs) and point spread functions (PSFs) at several typical wavelengths) of the RIT primary mirror is also simulated. The results show that tip sensing is very important for increasing the active control quality of the RIT primary mirror under the present techniques.展开更多
In order to realize variable contrast in the minimum resolvable contrast (MRC) measuring target in the visible imaging system, a novel technique is presented, which adopts two integrating spheres to illuminate two sid...In order to realize variable contrast in the minimum resolvable contrast (MRC) measuring target in the visible imaging system, a novel technique is presented, which adopts two integrating spheres to illuminate two sides of target respectively and the different contrasts can be achieved by regulating the luminance in two integrating spheres. This technique can make the contrast be regulated more conveniently. Based on this technique, the MRC measuring device is developed. This device can be used in all kinds of trial fields. The expanded uncertainty of measuring MRC is less than 3%.展开更多
Based on the point spread function of holographic system, the lateral resolution of digital holographic imaging system without any pre-magnification is studied. The expression of resolution limitation of holo-graphic ...Based on the point spread function of holographic system, the lateral resolution of digital holographic imaging system without any pre-magnification is studied. The expression of resolution limitation of holo-graphic imaging system is thus presented. We investigate the possibilities to improve the lateral resolution. The simple experimental setup with an off-axis arrangement is built. By using a U.S. Air Force (USAF) test target as microscopic object, the recorded holograms are reconstructed digitally based on the principle of Fresnel diffraction. The lateral resolution of 2.76 μm without any pre-magnification is demonstrated experimentally, which matches the theoretical prediction well.展开更多
We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion.The image distortion is analyzed using transfer function approach. Atomic flux density di...We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion.The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method.Simulation results have shown that source imperfection,especially beam spread, plays an important role in broadening the feature width,and the focus depth of atom lens for real atomic source is longer than that for perfect source.The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance.展开更多
Based on the analysis for the main elements of the total modulation transfer function (MTF) of imager on geostationary platform, the precise evaluation for its low spatial frequency spectrum has been achieved. Meanw...Based on the analysis for the main elements of the total modulation transfer function (MTF) of imager on geostationary platform, the precise evaluation for its low spatial frequency spectrum has been achieved. Meanwhile, it is pointed out that the main cause of imagery spatial resolution lower than the designed value is the "slight defocus" of imager focal plane array (FPA). The validation method for visible imagery spatial resolution is proposed based on the analysis of defocused optical system model and edge-spread-function (ESF), the relative error is less than 7% after alleviating stray light effects. This method has been applied in the in-orbit ground testing of FY-2C geostationary meteorological satellite successfully.展开更多
The highly Ge-doped photosensitive fiber (PSF) has been widely used in the fabrication of fiber Bragg gratings (FBGs). Its birefringence and cladding mode coupling characteristics greatly influence FBG's transmis...The highly Ge-doped photosensitive fiber (PSF) has been widely used in the fabrication of fiber Bragg gratings (FBGs). Its birefringence and cladding mode coupling characteristics greatly influence FBG's transmission feature in communication application areas. In this work, a new concept of the PSF is introduced which, along with an optimized birefringence design, a precisely controlled fabrication process, and a cladding mode depressed design, results in a written FBG with -25-dB clad mode-depressed ratio and a polarization mode dispersion value less than 0.045 ps.展开更多
The wavefront coding technique is used to enlarge the depth of field(DOF)of incoherent imaging systems. The key to wavefront coding lies in the design of suitable phase masks.To date,numerous kinds of phase masks ar...The wavefront coding technique is used to enlarge the depth of field(DOF)of incoherent imaging systems. The key to wavefront coding lies in the design of suitable phase masks.To date,numerous kinds of phase masks are proposed.However,further understanding is needed regarding phase mask with its phase function being in a standard sinusoidal form.Therefore,the characteristics of such a phase mask are studied in this letter.Deriving the defocused optical transfer function(OTF)analytically proves that the standard sinusoidal phase mask is effective in extending the DOF,and actual experiments confirm the numerical results.At the same time,with the Fisher information as a criterion,the standard sinusoidal phase mask shows a higher tolerance to focus errors(especially severe focus errors)than the classical cubic phase mask.展开更多
A semi-blind image restoration algorithm is proposed based on reduced non-convex approximation of Luminita Vese and Tony Chan's (C-V) denoising model. Compared with C-V denoising model, we modify the fidelity term ...A semi-blind image restoration algorithm is proposed based on reduced non-convex approximation of Luminita Vese and Tony Chan's (C-V) denoising model. Compared with C-V denoising model, we modify the fidelity term and add a term on point spread function (PSF). The function depends on two variables: the image function to be restored u and the standard deviation of Gaussian kernel to be estimated a. Then the problems consist in solving a system with two coupled equations. Compared with the Leah Bar's semi-blind image restoration model which must solve three coupled equations, our method only needs to solve two equations. Furthermore, the estimation of f by our algorithm is superior to Leah Bar's algorithm. The experimental results demonstrate that the proposed method is effective.展开更多
Optical systems are analyzed with three kinds of rotational symmetric pupil masks: annular Gaussian ring mask, supergaussian ring mask, and quartic phase mask. In these masks, the quartic phase mask is found to be th...Optical systems are analyzed with three kinds of rotational symmetric pupil masks: annular Gaussian ring mask, supergaussian ring mask, and quartic phase mask. In these masks, the quartic phase mask is found to be the best one to extend focal depth. Point spread function (PSF) and Strehl ratio (SR) are used to evaluate the imaging quality of the system with different defocus parameters. Without decoding needed, the focal depth of the system with quartic phase mask is four times as deep as aberration-free system. Different from the others, it suffers no obvious loss in the light throughput and lateral resolution. With twice focal depth extension, supergaussian ring mask suffers less loss in light throughput and lateral resolution than annular Gaussian ring mask.展开更多
Unmanned aerial vehicle(UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution...Unmanned aerial vehicle(UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function(APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61205144the Research Project of National University of Defense Technology under Grant No JC13-07-01the Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences
文摘An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(Grant No.KGFZD-125-13-006)
文摘The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.
文摘AIM: To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS: Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS: The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies (cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd(P<0.05). CONCLUSION: MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail.
基金Project supported by the Innovation Research Foundations for Postgraduates of National University of Defense Technology and Hunan Province, Chinathe National Natural Science Foundation of China (Grant No. 61008037)
文摘The density distribution of a supersonic turbulent boundary layer is measured with the nanoparticle-based planar laser scattering technique, and the temporal evolution of its optical path difference (OPD) in a short time interval is characterized by proper orthogonal decomposition (POD). Based on the advantage of POD in capturing the energy of a signal, a temporal evolution model is suggested for the POD coefficients of the OPD. In this model, the first few coefficients vary linearly with time, and the others are modeled by Gaussian statistics. As an application, this method is used to compute the shortexposure optical transfer function.
基金supported by the National Natural Science Foundation of China (No.60977010)the National Key Basic Research and Development Program of China (No.2009CB724006)+1 种基金the National High Technology Research and Development Program of China (No.2009AA12Z108)the Innovation Foundation of China Aerospace Science and Technology Corporation
文摘We propose a new analytical edge spread function (ESF) fitting model to measure the modulation transfer function (MTF).The ESF data obtained from a slanted-edge image are fitted to our model through the non-linear least squares (NLLSQ) method.The differentiation of the ESF yields the line spread function (LSF),the Fourier transform of which gives the profile of two-dimensional MTF.Compared with the previous methods,the MTF estimate determined by our method conforms more closely to the reference.A practical application of our MTF measurement in degraded image restoration also validates the accuracy of our model.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301801)the National Natural Science Foundation of China(Grant Nos.10904099 and 11174211)
文摘A new phase-correction method in a realistic loss superlens imaging system is theoretically predicted. The image resolution is enhanced using the near-field active phase-correction method. Resolvable separation between two slits has been significantly improved to λ/20 for the symmetrical superlens system and λ/12 for unsymmetrical system.
基金the National Key R&D Program of China(No.2019YFB1803904)in part by the National Natural Science Foundation of China(Grant Nos.61805104,11704156,61935013,61875076,and 61865014)in part by the Open Project of Wuhan National Laboratory for Optoelectronics,China(No.2018WNLOKF015).
文摘Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology.With the development of dielectric metasurfaces of different geometries and resonance mechanisms,diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures.This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first-and second-order spatial differentiators realized via the Green's function approach.The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer flinctions of metasurfaces for different incident wavevectors and polarizations.To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition,edge detection is described to illustrate the practicability of the device.As an application example,experimental demonstrations of edge detection for different biological cells and a flower mold are discussed,in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations.The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.
基金Foundation of China under Grant Nos.60977003 and 61032005
文摘A 5-bit photonic analog-to-digital conversion under a sampling rate of 10 Gs/s is experimentally demon- strated. In the experiment, the birefringence walk-off in the scheme is compensated, and 16 high-extinction ratio optical transfer functions with different phase shifts are obtained. A I-GHz sinusoidal analog signal is sampled and Quantized by optical processing, and the effective number of bits obtained is 4.17.
基金supported by the National Natural Science Foundation of China(No.60777002)Ningbo Science and Technology Bureau(No.2008A610035).
文摘Wavefront coding (WFC) is used to extend the field depth of an incoherent optical system by employing a phase mask on the pupil. We uses a Fisher information (FI) metric based optimization method to design a phase mask by taking the modulation transfer function (MTF) of the practical optical system into consid- eration. This method can modulate the wavefront so that the point spread function and optical transfer function are insensitive to the object distance. The simulation results show that the optimized phase mask based on the proposed method can further improve the defocusing image quality while maintaining the focusing image quality.
基金supported by the National Natural Science Foundation of China(Nos.61205201 and 11174147)the Fundamental Research Funds for the Central Universities,Nanjing University of Aeronautics and Astronautics(No.NZ2012305)+1 种基金the Nanjing University of Aeronautics and Astronautics Scientific Research Fund for Person with Ability in Draught(No.56YAH12011)the Postdoctoral Research Funds of Jiangsu Province(No.1201034C)
文摘Convolution kernel-based non-uniform fast Fourier transform (NUFFT) is an effective image reconstruction method for Fourier domain optical coherence tomography. By measuring the reconstruction error, a general method for finding the optimal parameters of the kernel function is investigated. Performances in terms of point spread function and computation time are evaluated. The NUFFT with optimal parameters yields signal sensitivity of over 40 dB, with a computation time that is decreased by 85% compared with the conventional oversampling NUFFT. In vivo images of finger tissue are efficiently reconstructed through the proposed reconstruction method.
基金supported by the National Natural Science Foundation of China(Nos.10573035,10533040)the National "973" Program of China(No.2006CB806300).
文摘The active control of 30-m ring interferometric telescope (RIT) needs edge sensing and tip sensing when its primary mirror is composed by trapezoid-shaped segments, and the imaging performance of the RIT is determined by the accuracy of these two detecting approaches. Considering the detecting accuracy available in current segmented telescope active control systems, the effect of these detecting approaches on the surface error of the RIT primary mirror is calculated from the point of error propagation. The corresponding effect on imaging performance (modulation transfer functions (MTFs) and point spread functions (PSFs) at several typical wavelengths) of the RIT primary mirror is also simulated. The results show that tip sensing is very important for increasing the active control quality of the RIT primary mirror under the present techniques.
文摘In order to realize variable contrast in the minimum resolvable contrast (MRC) measuring target in the visible imaging system, a novel technique is presented, which adopts two integrating spheres to illuminate two sides of target respectively and the different contrasts can be achieved by regulating the luminance in two integrating spheres. This technique can make the contrast be regulated more conveniently. Based on this technique, the MRC measuring device is developed. This device can be used in all kinds of trial fields. The expanded uncertainty of measuring MRC is less than 3%.
基金the National Natural Science Foundation of China(No.60577029)the Natural Science Foundation of Hebei Province (No.F2008000750)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality,PHR(IHLB)
文摘Based on the point spread function of holographic system, the lateral resolution of digital holographic imaging system without any pre-magnification is studied. The expression of resolution limitation of holo-graphic imaging system is thus presented. We investigate the possibilities to improve the lateral resolution. The simple experimental setup with an off-axis arrangement is built. By using a U.S. Air Force (USAF) test target as microscopic object, the recorded holograms are reconstructed digitally based on the principle of Fresnel diffraction. The lateral resolution of 2.76 μm without any pre-magnification is demonstrated experimentally, which matches the theoretical prediction well.
基金This work was supported by the Innovation Foundation of the Chinese Academy of Sciences under Grant No. A2K0009.
文摘We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion.The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method.Simulation results have shown that source imperfection,especially beam spread, plays an important role in broadening the feature width,and the focus depth of atom lens for real atomic source is longer than that for perfect source.The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40401040.
文摘Based on the analysis for the main elements of the total modulation transfer function (MTF) of imager on geostationary platform, the precise evaluation for its low spatial frequency spectrum has been achieved. Meanwhile, it is pointed out that the main cause of imagery spatial resolution lower than the designed value is the "slight defocus" of imager focal plane array (FPA). The validation method for visible imagery spatial resolution is proposed based on the analysis of defocused optical system model and edge-spread-function (ESF), the relative error is less than 7% after alleviating stray light effects. This method has been applied in the in-orbit ground testing of FY-2C geostationary meteorological satellite successfully.
文摘The highly Ge-doped photosensitive fiber (PSF) has been widely used in the fabrication of fiber Bragg gratings (FBGs). Its birefringence and cladding mode coupling characteristics greatly influence FBG's transmission feature in communication application areas. In this work, a new concept of the PSF is introduced which, along with an optimized birefringence design, a precisely controlled fabrication process, and a cladding mode depressed design, results in a written FBG with -25-dB clad mode-depressed ratio and a polarization mode dispersion value less than 0.045 ps.
基金supported by the West Light Foundation of the Chinese Academy of Sciences under GrantNo.J11-002
文摘The wavefront coding technique is used to enlarge the depth of field(DOF)of incoherent imaging systems. The key to wavefront coding lies in the design of suitable phase masks.To date,numerous kinds of phase masks are proposed.However,further understanding is needed regarding phase mask with its phase function being in a standard sinusoidal form.Therefore,the characteristics of such a phase mask are studied in this letter.Deriving the defocused optical transfer function(OTF)analytically proves that the standard sinusoidal phase mask is effective in extending the DOF,and actual experiments confirm the numerical results.At the same time,with the Fisher information as a criterion,the standard sinusoidal phase mask shows a higher tolerance to focus errors(especially severe focus errors)than the classical cubic phase mask.
基金the Knowledge Innovation Program of Chinese Academy of Sciences(No.07A1210101)
文摘A semi-blind image restoration algorithm is proposed based on reduced non-convex approximation of Luminita Vese and Tony Chan's (C-V) denoising model. Compared with C-V denoising model, we modify the fidelity term and add a term on point spread function (PSF). The function depends on two variables: the image function to be restored u and the standard deviation of Gaussian kernel to be estimated a. Then the problems consist in solving a system with two coupled equations. Compared with the Leah Bar's semi-blind image restoration model which must solve three coupled equations, our method only needs to solve two equations. Furthermore, the estimation of f by our algorithm is superior to Leah Bar's algorithm. The experimental results demonstrate that the proposed method is effective.
文摘Optical systems are analyzed with three kinds of rotational symmetric pupil masks: annular Gaussian ring mask, supergaussian ring mask, and quartic phase mask. In these masks, the quartic phase mask is found to be the best one to extend focal depth. Point spread function (PSF) and Strehl ratio (SR) are used to evaluate the imaging quality of the system with different defocus parameters. Without decoding needed, the focal depth of the system with quartic phase mask is four times as deep as aberration-free system. Different from the others, it suffers no obvious loss in the light throughput and lateral resolution. With twice focal depth extension, supergaussian ring mask suffers less loss in light throughput and lateral resolution than annular Gaussian ring mask.
基金supported by the National Natural Science Foundation of China(No.61405191)
文摘Unmanned aerial vehicle(UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function(APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.