Composite biomaterials made of biodegradable polylactic acid (PLA) and bioactive magnesium (Mg) salt are developed for orthopaedic implants or metal implant coatings. The releasing of Mg salt into the biological e...Composite biomaterials made of biodegradable polylactic acid (PLA) and bioactive magnesium (Mg) salt are developed for orthopaedic implants or metal implant coatings. The releasing of Mg salt into the biological environment benefits the bone growth, while with the releasing of Mg salt and degradation of PLA there forms a porous scaffold for tissue engineering. The size and morphology of the salt and voids are adjustable with such preparation conditions as salt content, pH of casting solution, and the solidification rate, so that we can control the salt releasing and degradation rate of PLA. Dielectric spectroscopy is used to investigate the dispersive structures of Mg salt and voids in the polymer matrix and to monitor the in situ releasing of Mg salts in the simulated body fluid (SBF). The current study provides us with an orthopedic biomaterial with controllable multi-phase structures, and a tool to investigate the in vivo behaviors of biomaterials.展开更多
基金financially supported by the National Natural Scientific Foundation of China(Nos.50773077,20934005 and 51273091)the Hong Kong Special Administration Region Earmarked Projects(CUHK4042/09P,2160396)
文摘Composite biomaterials made of biodegradable polylactic acid (PLA) and bioactive magnesium (Mg) salt are developed for orthopaedic implants or metal implant coatings. The releasing of Mg salt into the biological environment benefits the bone growth, while with the releasing of Mg salt and degradation of PLA there forms a porous scaffold for tissue engineering. The size and morphology of the salt and voids are adjustable with such preparation conditions as salt content, pH of casting solution, and the solidification rate, so that we can control the salt releasing and degradation rate of PLA. Dielectric spectroscopy is used to investigate the dispersive structures of Mg salt and voids in the polymer matrix and to monitor the in situ releasing of Mg salts in the simulated body fluid (SBF). The current study provides us with an orthopedic biomaterial with controllable multi-phase structures, and a tool to investigate the in vivo behaviors of biomaterials.