期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Mammalin cochlear supporting cells transdifferentiation into outer hair cells 被引量:1
1
作者 刘思伟 张少强 +3 位作者 朱宏亮 李白牙 郑庆印 李胜利 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第4期256-261,281,共7页
Objective To study the recovery of the outer hair cells in the bat cochlea after gentamicin exposure. Methods Bats were injected with a daily dose of gentamicin for 15 consecutive days and bromodeoxyuridine (BrdU) was... Objective To study the recovery of the outer hair cells in the bat cochlea after gentamicin exposure. Methods Bats were injected with a daily dose of gentamicin for 15 consecutive days and bromodeoxyuridine (BrdU) was given from day 16 to day 40 of this recovery phase. Hearing was assessed by overt acoustic behavior and auditory brainstem responses analysis, which was performed one day prior to the first injection and a day after the last injection (day 16). On day 40 animals were sacrificed for detection of cells that could take up BrdU. Results After 15 days of gentamicin treatment, all of the animals were proved to be deafened with significant increases of ABR thresholds, compared with control group. The findings in immunocytochemical stained samples and scanning electron microscopy revealed that BrdU labeled nuclei were observed in the cochlea in all of the deafened animals most commonly in the regions of the first-row and second-row Deiter's cells (DCs) and occasionally in the regions of the third-row DCs. Conclusion We suggest that, under sufficient drug and enough time, the bat cochlear supporting cells can directly transdifferentiate into the outer hair cells after aminoglycoside exposure. This transdifferentation process is essential for repair of outer hair cells and recovery of normal function after gentamicin exposure. 展开更多
关键词 regeneration bat animal model gentamcin recovery outer hair cell bromodeoxyuridine (BrdU)
下载PDF
Acetylcholine-induced calcium oscillation in isolated outer hair cells in guinea pig 被引量:1
2
作者 XIE Ding-hua1*, XIAO Zi-an1, YANG Shu1 1. Department of Otolaryngology/Head and Neck Surgery, Institute of Otology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China 《Journal of Otology》 2006年第2期99-102,共4页
Objective This study is to explore the relationship between acetylcholine(ACh)-induced calcium release from intracellular Ca2+ stores and function of outer hair cell(OHC) motors, in an attempt to elucidate the mechani... Objective This study is to explore the relationship between acetylcholine(ACh)-induced calcium release from intracellular Ca2+ stores and function of outer hair cell(OHC) motors, in an attempt to elucidate the mechanism of OHC electromotility at resting state. Methods OHCs were isolated from adult guinea pig (200-300 g) cochlea and loaded with Fluo-3/AM. The cells were treated with ACh/dHBSS, ACh/HBSS, dHBSS only or HBSS only. Intracellular [Ca2+]i variations in cells under the four treatments were observed using an Ar-Kr laser scan confocal microscope. Results [Ca2+]i oscillations were recorded in five OHCs treated with ACh/dHBSS but not in other cells. This is the first time that Ach-excited [Ca2+]i oscillations are reported in guinea pig OHCs independent of extracellular calcium. Conclusions ACh-excited [Ca2+]i oscillations in OHCs originates from intracellular calcium release and may play a crucial role in maintaining active mechanical motility of the OHC at resting and modulating OHC electromotility. 展开更多
关键词 calcium oscillation outer hair cell guinea pig acetylcholine.
下载PDF
Changes of F-actin expression in the outer hair cells in guinea pig cochlea following conditioning exposure
3
作者 CAO Hua DONG Mingmin +1 位作者 DONG Minsheng WU Yiming 《河南医科大学学报》 2000年第6期495-495,共1页
关键词 noise exposure F-ACTIN laser scanning confocal microscopy outer hair cell COCHLEA guinea pig
下载PDF
Protective effects of the cochlear efferent system on the outer hair cells against intense sound:evidences from DPOAEs
4
作者 ZHENG Jiefu JIANG Sichang +2 位作者 GU Rui YANG Weiyan LI Xingqi(Dept. of Otolaryngology, Chinese PLA Generol Hospital Beijing 100853) 《Chinese Journal of Acoustics》 1998年第3期221-226,共6页
It has been revealed in recent years that contralateral acoustic stimulation can affect cochlear active mechanisms through activating medial olivocochlear system (MOC) of the cochlear efferent nerve fibers. The MOC is... It has been revealed in recent years that contralateral acoustic stimulation can affect cochlear active mechanisms through activating medial olivocochlear system (MOC) of the cochlear efferent nerve fibers. The MOC is therefore postulated to exert protective effects on outer hair cells (OHCs) under intense sound condition. In this study the effects of 4 kHz intense tone exposure on distortion product otoacoustic emissions (DPOAEs) in guinea pigs with and without contralateral white noise stimulation were observed so that to investigate the protective effects of MOC on OHCs. The results showed that DPOAEs obviously deceased after the intense tone exposure in all animals, while both the amplitude reduction and the affected frequency range of DPOAEs were smaller in animals with simultaneously delivered contralateral white noise during the tone exposure than that in animals without colltralateral acoustic stimulation. The above results may suggest some protective nature of the contralateral sound stimulating effects which might be mediated through the activity of MOC. These perhaps can serve as the evidence that the protective mechanism against intense sound operates in the outer hair cells which are strongly innervated by 展开更多
关键词 Protective effects of the cochlear efferent system on the outer hair cells against intense sound
原文传递
Distribution of Prestin on Outer Hair Cell Basolateral Surface 被引量:3
5
作者 YU Ning1,2, ZHAI Suo-qiang1, YANG Shi-ming1, HAN Dong-yi1, ZHAO Hong-bo2, 1 Department of Otolaryngology & Institute of Otolaryngology, CPLA General Hospital, BJ, 100853 2 Department of Surgery-Otolaryngology, University of Kentucky Medical Center, Lexington, KY 40536-0293 《Journal of Otology》 2008年第2期92-97,共6页
Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility and is expressed on the OHC surface. Previous studies revealed that OHC electromotility and its associated nonlinear... Prestin has been identified as a motor protein responsible for outer hair cell (OHC) electromotility and is expressed on the OHC surface. Previous studies revealed that OHC electromotility and its associated nonlinear capacitance were mainly located at the OHC lateral wall and absent at the apical cuticular plate and the basal nucleus region. Immunofluorescent staining for prestin also failed to demonstrate prestin expression at the OHC basal ends in whole-mount preparation of the organ of Corti. However, there lacks a definitive demonstration of the pattern of prestin distribution. The OHC lateral wall has a trilaminate organization and is composed of the plasma membrane, cortical lattice, and subsurface cisternae. In this study, the location of prestin proteins in dissociated OHCs was examined using immunofluorescent staining and confocal microscopy. We found that prestin was uniformly expressed on the basolateral surface, including the basal pole. No staining was seen on the cuticular plate and stereocilia. When co-stained with a membrane marker di-8-ANEPPS, prestin-labeling was found to be in the outer layer of the OHC lateral wall. After separating the plasma membrane from the underlying subsurface cisternae using a hypotonic extracellular solution, prestin-labeling was found to be in the plasma membrane, not the subsurface cisternae. The data show that prestin is expressed in the plasma membrane on the entire OHC basolateral surface. 展开更多
关键词 plasma mebrane outer hair cell electromotility COCHLEA active mechanics di-8-ANEPPS
下载PDF
Measurement of Ca^(2+) Flow in Cochlear Cells Using Non-Invasive Micro-Test Technique 被引量:1
6
作者 CHEN Shi-qin YU Ning +2 位作者 YE Sheng-nan YANG Shi-ming ZHAI Suo-qiang 《Journal of Otology》 2010年第2期90-96,共7页
Objective To test Calcium ion(Ca2+) flow at the head and end of outer hair cells(OHCs) in resting state and in response to Nimodipine treatment.Methods Non-invasive micro-test techniques were used to study Ca2+ in iso... Objective To test Calcium ion(Ca2+) flow at the head and end of outer hair cells(OHCs) in resting state and in response to Nimodipine treatment.Methods Non-invasive micro-test techniques were used to study Ca2+ in isolated OHCs in adult guinea pigs.Results Four types of Ca2+ transport were identified in OHCs on basilar membrane tissue fragments:influx at the head of with efflux at the bottom(type 1):efflux at the head of OHCs with influx at the bottom(type 2);influx at the both head and bottom(type 3);and efflux at the both head and bottom(type 4).However,only type 1 and type 3 of Ca2+ ion transport were detected in the cochlea.We propose that Ca2+ ion transport exists in adult guinea pig cochlear OHCs in resting state and is variable.Ca2 + flow in OHC can be inhibited by Nimodipine in resting state. 展开更多
关键词 Guinea pig outer hair cells Ca2+ion non-invasive micro-test technique nimodipine.
下载PDF
Neurodynamics analysis of cochlear hair cell activity 被引量:1
7
作者 Weifeng Rong Rubin Wang +1 位作者 Jianhai Zhang Wanzeng Konga 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第1期8-15,共8页
There have been many studies on the effect of cochlea basal membrane movement on the resolution of different frequencies and intensities.However,these studies did not take into account the influence of power and energ... There have been many studies on the effect of cochlea basal membrane movement on the resolution of different frequencies and intensities.However,these studies did not take into account the influence of power and energy consumption of the hair cells in the process of the electromotility movement,as well as the neurodynamic mechanism that produced this effect.This makes previous studies unable to fully clarify the function of outer hair cells(OHCs)and the mechanism of sound amplification.To this end,we introduce the gate conductance characteristics of the hair cells in the mechanical process of increasing frequency selectivity.The research finds that the low attenuation of OHCs membrane potential and the high gain in OHC power and energy consumption caused that OHC amplification is driven by electromotility.The research results show that the amplification of the OHCs is driven by low attenuation of membrane potential and high gain of power and energy consumption.This conclusion profoundly reveals the physiological mechanism of the electromotility movement. 展开更多
关键词 hair cells Sound frequencies Membrane potential POWER outer hair cell amplification
下载PDF
Noise exposure induced cochlear hair cell death pathways in guinea pig
8
作者 Alfred Nuttall 《Journal of Otology》 2010年第1期51-56,共6页
Objective To understand the mechanism of noise exposure induced outer hair cells(OHCs) death pathways. Methods Thirty two guinea pigs were used in this study. The animals were either exposed for 4 h/day to broadband n... Objective To understand the mechanism of noise exposure induced outer hair cells(OHCs) death pathways. Methods Thirty two guinea pigs were used in this study. The animals were either exposed for 4 h/day to broadband noise at 122 dB SPL (A-weighted) for 2 consecutive days or perfused with MNNG. After auditory test, the cochleae of animals were dissected. Propidium iodide (PI), a DNA intercalating fluorescent probe, was used to trace morphological changes in OHC nuclei. F-actin staining was used to determine missing OHCs. Caspase-3 was detected in living organ of Corti whole mounts using the fluorescent probe. The single strand DNA (ssDNA) in apoptotic OHCs in guinea pigs and apoptosis inducing factor (AIF) in hair cells in guinea pigs were examined by immunohistology method. Whole mounts of organ of Corti were prepared. Morphological and fluorescent changes were examined under a confocal microscope. Results (1) Both apoptotic and necrotic hair cells appeared following noise exposure. (2) Noise exposure induced single strand DNA in apoptotic OHCs but not in the normal OHCs. (3) Either after noise exposure or after MNNG perfusion, apoptotic OHCs were featured by nuclear condensation or fragmentation with caspase-3 activation, whereas necrotic OHCs were characterized by nuclear swelling without caspase-3 activation. (4) In normal organ of Corti, AIF was located in the mitochondria areas. After noise exposure, AIF was translocated from mitochondria in apoptotic and necrotic OHCs. Conclusion These findings indicate that noise exposure damages DNA in the OHC, which triggers action of Caspase-3. Subsequently, AIF is translocated to the nucleus, leading to DNA damage and OHCs death. 展开更多
关键词 Noise exposure outer hair cell Single strand DNA Apoptosis induced factor Caspase.
下载PDF
Prestin forms tetramer with each subunit being mechanically independent
9
作者 WANG Xiang 1, GUO Wei-wei 2, HE David Zhi-Zhou1, YANG Shi-Ming 2 1 Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA 2 Institute of Otolaryngology, Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853 《Journal of Otology》 2009年第2期86-97,共12页
Prestin is the motor protein of cochlear outer hair cells (OHCs). It is able to perform rapid and reciprocal electromechanical conversion that underlies OHC electromotility. Due to the inadequate size of a single pres... Prestin is the motor protein of cochlear outer hair cells (OHCs). It is able to perform rapid and reciprocal electromechanical conversion that underlies OHC electromotility. Due to the inadequate size of a single prestin molecule to form the ~12 nm intramembraneous protein particles (IMPs) in the OHC lateral membrane (LM), the possibility of prestin oligomerization has been proposed. It has been suggested that prestin molecules form highorder oligomers, most likely as the tetramer, in heterologous systems. In OHCs, however, the oligomeric structure of prestin remains unclear. Here we calculated the prestin-related charge density in both gerbil and guinea pig OHCs through measuring their nonlinear capacitance (NLC) and LM surface area, showing that the average charge density (22, 608 μm-2 in gerbils; 19, 460 μm-2 in guinea pigs) is statistically 4 times the average density of IMPs (5,686 μm-2 in gerbils; 5, 000 μm-2 in guinea pigs). This suggests that each IMP contains four prestin molecules based upon the notion that each prestin transfers a single elementary charge, implying that prestin forms tetramers in OHCs. To determine whether the prestin tetramer functions as a mechanical unit, we subsequently compared the slope factors (α) of electromotility and NLC simultaneously measured from the same OHC, showing that the α values of the two are statistically the same. This suggests that each prestin molecule in the tetramer is mechanically independent and equally contributes to OHC electromotility. 展开更多
关键词 PRESTIN OLIGOMER outer hair cells ELECTROMOTILITY nonlinear capacitance GERBIL
下载PDF
Otoacoustic emissions value in patients with idiopathic sudden sensorineural hearing loss
10
作者 Aya El-sayed El-sayed Gaafar Elshahat Ibrahem Ismail Hesham Saad Zaghloul 《Journal of Otology》 CSCD 2022年第4期183-190,共8页
Objectives:This study aimed to determine the prognostic value of otoacoustic emissions(OAEs)in idiopathic sudden sensorineural hearing loss patients.Methods:The study included 30 subjects with unilateral idiopathic su... Objectives:This study aimed to determine the prognostic value of otoacoustic emissions(OAEs)in idiopathic sudden sensorineural hearing loss patients.Methods:The study included 30 subjects with unilateral idiopathic sudden sensorineural hearing loss(ISSNHL).Each patient was evaluated four times:at baseline and after one week,one month,and three months of treatment.During each visit,each patient was subjected to full audiological history,otoscopic examination,basic audiological evaluations,and transiently evoked and distortion product otoacoustic emission(TEOAEs&DEOAEs).Results:The hearing thresholds(frequency range 250e8000 Hz)and word recognition scores of patients with detectable TEOAEs and DPOAEs improved significantly,whereas no significant improvements were observed in those with no response.Conclusion:Hearing improvement is better in patients with detectable TEOAEs and DPOAEs.As a result,TEOAEs and DPOAEs are recommended as routine tests in all SSNHL patients to predict outcomes and monitor treatment as TEOAEs and DPOAEs reflect the cochlear OHCs activity. 展开更多
关键词 Sudden sensorineural hearing loss Transiently evoked otoacoustic emission Distortion product otoacoustic emission outer hair cells
下载PDF
Zinc-finger protein A20 protects hair cells from damage made by high-power microwave
11
作者 Feng Tang Xiaoling Chen +3 位作者 Lifeng Jia Hai Li Jingya Li Wei Yuan 《Journal of Bio-X Research》 2019年第3期132-139,共8页
Inner ear hair cells are important for maintaining hearing.Irreversible damage to hair cells is an important cause of sensorineural deafness.Electromagnetic radiation,especially high-power microwave,is an important th... Inner ear hair cells are important for maintaining hearing.Irreversible damage to hair cells is an important cause of sensorineural deafness.Electromagnetic radiation,especially high-power microwave,is an important threat to human health in modern society and war.However,it is not clear whether high-power microwave has an effect on cochlea hair cells.This study aimed to assess the effects of high-power microwave on cochlear hair cells in guinea pigs,and investigate the potential protection of these cells against high-power microwave-induced damage by recombinant adenovirus A20.Based on experimental results,a 65 W/cm^(2) irradiation density applied to guinea pigs in this study to establish a high-power microwave inner ear injury model.In addition,pAdEeay-1/A20 was injected via a round window into experimental guinea pig cochlea,whereas artificial perilymph was injected into the control group.Auditory function was assessed by testing the auditory brainstem response threshold,and damage to cochlear hair cells was investigated by cell counting and scanning electron microscopy observations of the basilar membrane.Inner ear injury was observed 6 hours after 65 W/cm^( 2 ) of irradiation and the auditory brainstem response threshold was significantly higher in the irradiation group(P<0.05)compared with other groups.Propidium iodide staining and scanning electron microscopy results indicated that significant morphological changes occurred after radiation,especially to inner hair cells,which exhibited remarkable damage and the presence of several unknown spherical substances.Auditory brainstem response threshold was decreased in the pAdEeay-1/A20 group compared with the artificial perilymph group;moreover,damage to hair cells was milder in the pAdEeay-1/A20 group compared with the control group(P<0.01).Thus,high-power microwave can cause damage to cochlear hair cells,as well as hearing loss with prolonged exposure and/or high dosage.In this regard,65 W/cm^( 2 ) of irradiation for 6 hours is a reliable target dose for observation of damage.The zinc finger protein A20 can protect cochlear hair cells from high-power microwave-induced damage and prevent further hearing loss.This study was approved by the Laboratory Animal Welfare and Ethics Committee of the Third Military Medical University,China on April 18,2017. 展开更多
关键词 COCHLEA zinc finger protein A20 high power microwave inner hair cells outer hair cells inner ear ADENOVIRUS microwave irradiation
原文传递
Ototoxic effects of mefloquine in cochlear organotypic cultures 被引量:2
12
作者 Richard Salvi 《Journal of Otology》 2009年第2期76-85,共10页
Mefloquine is a widely used anti-malarial drug. Some clinical reports suggest that mefloquine may be ototoxic and neurotoxic, but there is little scientific evidence from which to draw any firm conclusion. To evaluate... Mefloquine is a widely used anti-malarial drug. Some clinical reports suggest that mefloquine may be ototoxic and neurotoxic, but there is little scientific evidence from which to draw any firm conclusion. To evaluate the ototoxic and neurotoxic potential of mefloquine, we treated cochlear organotypic cultures and spiral ganglion cultures with various concentrations of mefloquine. Mefloquine caused a dose-dependent loss of cochlear hair cells at doses exceeding 0.01 mM. Hair cell loss progressed from base to apex and from outer to inner hair cells with increasing dose. Spiral ganglion neurons and auditory nerve fibers were also rapidly destroyed by mefloquine in a dose-dependent manner. To investigate the mechanisms underlying mefloquine-induced cell death, cochlear cultures were stained with TO-Pro-3 to identify morphological changes in the nucleus, and with carboxyfluorescein FAM-labeled caspase inhibitor 8, 9 or 3 to determine caspase-mediated cell death. TO-Pro-3-labeled nuclei in hair cells, spiral ganglion neurons and supporting cells were shrunken or fragmented, morphological features characteristic of cells undergoing apoptosis. Both initiator caspase 8 (membrane damage) and caspase 9 (mitochondrial damage), along with executioner caspase 3, were heavily expressed in cochlear hair cells and spiral ganglions after mefloquine treatment. These three caspases were also expressed in support cells, although labeling was less widespread and less intense. These results indicate that mefloquine damages both the sensory and neural elements in the postnatal rat cochlea by initially activating cell death signaling pathways on the cell membrane and in mitochondria. 展开更多
关键词 MEFLOQUINE OTOTOXICITY NEUROPATHOLOGY outer hair cell inner hair cell spiral ganglion NEURONS axon degeneration
下载PDF
Anatomy and physiology of peripheral auditory system and commen causes of hearing loss 被引量:1
13
作者 ZHANG Qing1,DUAN Mao-li1-4 1 Department of Otorhinolarygology,The 2nd Affiliated Hospital of Xi’an Jiaotong University,School of Medicine,Xi’an Jiaotong University,Xi’an,P.R.China 2 Department of clinical neuroscience,3,Department of Otolaryngology,Karolinska Hospital,171 76 Stockholm,Sweden 4 Department of Otolaryngology,Affiliated Hospital of Anhui Medical University,China 《Journal of Otology》 2009年第1期-,共8页
For Otolaryngologist,it is the most important to know the principle of anatomy,physiology and common ototoxicity.Short but more concise summary has been sum up in the following review in order to help young ENT doctor... For Otolaryngologist,it is the most important to know the principle of anatomy,physiology and common ototoxicity.Short but more concise summary has been sum up in the following review in order to help young ENT doctor to understand the importance of this basic knowledge. 展开更多
关键词 inner hair cell outer hair cell spiral ganglion neuron OTOTOXICITY
下载PDF
Prestin-Mediated Frequency Selectivity Does not Cover Ultrahigh Frequencies in Mice 被引量:1
14
作者 Jie Li Shuang Liu +6 位作者 Chenmeng Song Tong Zhu Zhikai Zhao Wenzhi Sun Yi Wang Lei Song Wei Xiong 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第7期769-784,共16页
In mammals,the piezoelectric protein,Prestin,endows the outer hair cells(OHCs)with electromotility(eM),which confers the capacity to change cellular length in response to alterations in membrane potential.Together wit... In mammals,the piezoelectric protein,Prestin,endows the outer hair cells(OHCs)with electromotility(eM),which confers the capacity to change cellular length in response to alterations in membrane potential.Together with basilarmembrane resonance and possible stereociliary motility,Prestin-based OHC eM lays the foundation for enhancing cochlear sensitivity and frequency selectivity.However,it remains debatable whether Prestin contributes to ultrahigh-frequency hearing due to the intrinsic nature of the cel's low-pass features.The low-pass_property of mouse OHC eM is based on the finding that eM magnitude dissipates within the frequency bandwidth of human speech.In this study,we examined the role of Prestin in sensing broad-range frequencies(4-80 kHz)in mice that use ultrasonic hearing and vocalization(to>100 kHz)for social communication.The audiometric measurements in mice showed that ablation of Prestin did not abolish hearing at frequencies>40 kHz.Acoustic associative behavior tests confirmed that Prestin-knockout mice can learn ultrahigh-frequency sound-coupled tasks,similar to control mice.Ex vivo cochlear Ca2+imaging experiments demonstrated that without Prestin,the OHCs still exhibit ultrahigh-frequency transduction,which in contrast,can be abolished by a universal cation channel blocker,Gadolinium.In vivo salicylate treatment disrupts hearing at frequencies<40 kHz but not ultrahigh-frequency hearing.By pharmacogenetic manipulation,we showed that specific ablation of the OHCs largely abolished hearing at frequencies>40 kHz.These findings demonstrate that cochlear OHCs are the target cells that support ultrahigh-frequency transduction,which does not require Prestin. 展开更多
关键词 PRESTIN PIEZO2 Ultrahigh-frequency hearing ELECTROMOTILITY outer hair cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部