Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
Active source seismic method is generally used to image subsurface structures for resource exploration,including oil,gas and coal.Although it can provide highresolution subsurface structures,due to some economic and e...Active source seismic method is generally used to image subsurface structures for resource exploration,including oil,gas and coal.Although it can provide highresolution subsurface structures,due to some economic and environmental restrictions,it is not suitable in some cases.In recent 20 years,passive seismic survey based on ambient noise seismic interferometry(ANSI)has started to be widely used in imaging subsurface structures.In comparison,ANSI does not need active sources and can image subsurface structures at different depths as a lowcost alternative to active seismic exploration.展开更多
In the presence of background noise,arrival times picked from a surface microseismic data set usually include a number of false picks that can lead to uncertainty in location estimation.To eliminate false picks and im...In the presence of background noise,arrival times picked from a surface microseismic data set usually include a number of false picks that can lead to uncertainty in location estimation.To eliminate false picks and improve the accuracy of location estimates,we develop an association algorithm termed RANSAC-based Arrival Time Event Clustering(RATEC)that clusters picked arrival times into event groups based on random sampling and fitting moveout curves that approximate hyperbolas.Arrival times far from the fitted hyperbolas are classified as false picks and removed from the data set prior to location estimation.Simulations of synthetic data for a 1-D linear array show that RATEC is robust under different noise conditions and generally applicable to various types of subsurface structures.By generalizing the underlying moveout model,RATEC is extended to the case of a 2-D surface monitoring array.The effectiveness of event location for the 2-D case is demonstrated using a data set collected by the 5200-element dense Long Beach array.The obtained results suggest that RATEC is effective in removing false picks and hence can be used for phase association before location estimates.展开更多
An analysis of a passive seismic method for subsurface imaging is presented in which ambient seismic noise is employed as the source of illumination of subsurface scatterers. The imaging algorithm can incorporate new ...An analysis of a passive seismic method for subsurface imaging is presented in which ambient seismic noise is employed as the source of illumination of subsurface scatterers. The imaging algorithm can incorporate new data into the image in a recursive fashion which causes image background noise to diminish over time. Under the assumption of spatially-incoherent ambient noise, an analytical expression for the point-spread function of the imaging algorithm is derived. The point-spread function (PSF) characterizes the resolution of the image, which is a function of the receiving array length and the ambient bandwidth.展开更多
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe dam...China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.展开更多
This paper considers a new approach to solving the problem of quantitative estimation of the microseism energy for underground sources that is based on the synthesis of noise interferometry and the passive seismic met...This paper considers a new approach to solving the problem of quantitative estimation of the microseism energy for underground sources that is based on the synthesis of noise interferometry and the passive seismic method of the gradient system. The selection of a seismic field of the underground sources is considered in an experiment conducted in the Tien Shan region. The peculiarities of approach include the separation of vertical microseisms in the ambient seismic noise field structure according to the data of the seismic gradient system and a passive noise interferometry diagram, where microseisms from the underground sources are used as the seismic signal source. It is shown that the use of noise interferometry and passive seismic gradient system allows using the synchronous microseism recordings in a small number of points for passive medium sensing, and leads to the restoration of unknown energy parameters of the seismic field of underground sources.展开更多
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
基金a part of the joint Polish-Chinese FULLIMAGE project,which received funding in the SHENG call from National Natural Science Foundation of China(NSFC)under grant no.41961134001the Polish National Science Centre(NCN)under grant no.UMO-2018/30/Q/ST10/00680
文摘Active source seismic method is generally used to image subsurface structures for resource exploration,including oil,gas and coal.Although it can provide highresolution subsurface structures,due to some economic and environmental restrictions,it is not suitable in some cases.In recent 20 years,passive seismic survey based on ambient noise seismic interferometry(ANSI)has started to be widely used in imaging subsurface structures.In comparison,ANSI does not need active sources and can image subsurface structures at different depths as a lowcost alternative to active seismic exploration.
文摘In the presence of background noise,arrival times picked from a surface microseismic data set usually include a number of false picks that can lead to uncertainty in location estimation.To eliminate false picks and improve the accuracy of location estimates,we develop an association algorithm termed RANSAC-based Arrival Time Event Clustering(RATEC)that clusters picked arrival times into event groups based on random sampling and fitting moveout curves that approximate hyperbolas.Arrival times far from the fitted hyperbolas are classified as false picks and removed from the data set prior to location estimation.Simulations of synthetic data for a 1-D linear array show that RATEC is robust under different noise conditions and generally applicable to various types of subsurface structures.By generalizing the underlying moveout model,RATEC is extended to the case of a 2-D surface monitoring array.The effectiveness of event location for the 2-D case is demonstrated using a data set collected by the 5200-element dense Long Beach array.The obtained results suggest that RATEC is effective in removing false picks and hence can be used for phase association before location estimates.
文摘An analysis of a passive seismic method for subsurface imaging is presented in which ambient seismic noise is employed as the source of illumination of subsurface scatterers. The imaging algorithm can incorporate new data into the image in a recursive fashion which causes image background noise to diminish over time. Under the assumption of spatially-incoherent ambient noise, an analytical expression for the point-spread function of the imaging algorithm is derived. The point-spread function (PSF) characterizes the resolution of the image, which is a function of the receiving array length and the ambient bandwidth.
文摘China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.
基金The data processing programs,development and implementation of the gradient array system are partially performed with the grant support from the Russian Foundation for Basic Research(No.20-05-00475)The subjects relating to the correlation of geophysical parameters with the average stress-strain behaviour of the geological environment are explored within the Russian State Governmental Task of the Research Station of the Russian Academy of Sciences(No.AAAA-A19-119020190063-2)。
文摘This paper considers a new approach to solving the problem of quantitative estimation of the microseism energy for underground sources that is based on the synthesis of noise interferometry and the passive seismic method of the gradient system. The selection of a seismic field of the underground sources is considered in an experiment conducted in the Tien Shan region. The peculiarities of approach include the separation of vertical microseisms in the ambient seismic noise field structure according to the data of the seismic gradient system and a passive noise interferometry diagram, where microseisms from the underground sources are used as the seismic signal source. It is shown that the use of noise interferometry and passive seismic gradient system allows using the synchronous microseism recordings in a small number of points for passive medium sensing, and leads to the restoration of unknown energy parameters of the seismic field of underground sources.