The no-till seeders of various soil opener configurations have been shown to produce various soil physical responses in relation to soil and climate conditions, thus affecting crop performance in permanent raised beds...The no-till seeders of various soil opener configurations have been shown to produce various soil physical responses in relation to soil and climate conditions, thus affecting crop performance in permanent raised beds (PRB) systems. This is particularly important in arid Northwest China where large volumes of residue are retained on the soil surface after harvest. In Zhangye, Gansu Province, China, a field trial assessed the effects of three typical (powered-chopper, powered-cutter and powered-disc) PRB no-till seeders and one traditional seeder on soil disturbance, residue cover index, bulk density, fuel consumption, plant growth, and subsequent yield. In general, seedbed conditions and crop performance for PRB no- till seeders seeded plots were better than for traditional seeded plots. In PRB cropping system, the powered-chopper seeder decreased mean soil disturbance and increased residue cover index compared to powered-disc and -cutter seeders. However, the results indicated that soil bulk density was 2.3-4.8% higher, soil temperature was 0.2-0.6℃ lower, and spring wheat emergence was 3.2-4.7% less. This was attributed to greater levels of residue cover and firmer seedbeds. Spring maize and wheat performance in the powered-cutter and -disc treatments was better (non-significant) than powered- chopper treatment. So powered disc no-till seeder, which generally provided the best planting condition and the highest yield, appeared to be the suitable seeder in heavy residue cover conditions. Considering the precision requirements for soil disturbance and residue cover, the powered strip-chopping no-till seeder could be a suitable option for PRB cropping system in Northwest China. Although these results are preliminary, they are still valuable for the design and selection of no-till seeders for PRB cropping systems in arid Northwest China.展开更多
In recent years, conventional rice production technologies have been leading to deterioration of soil health and declining farm profitability due to high inputs of water and labor. Conservation agriculture (CA) base...In recent years, conventional rice production technologies have been leading to deterioration of soil health and declining farm profitability due to high inputs of water and labor. Conservation agriculture (CA) based resource-conserving technologies i.e. zero-tillage (ZT), raised-bed planting and direct-seeded rice (DSR) have shown promise as alternatives to conventional production technologies to overcome these problems. Present study was undertaken during 2009-2012 to establish an understanding of how permanent raised bed cropping system could be practiced to save water at the field application level to improve water productivity and also have the capability to enhance productivity, profitability and soil physical quality. The results showed that among different crop establishment techniques, conventional-tilled puddle transplanted rice (CT-TPR) required 14%-25% more water than other techniques. Compared with the CT-TPR system, zero till direct-seeded rice (ZT-DSR) consumed 6%-10%less water with almost equal system productivity and demonstrated higher water productivity. Wide raised beds saved about 15%-24% water and grain yield decrease of about 8%. Direct-seeded rice after ZT or reduced tillage or on unpuddled soil provided more net income than CT-TPR. The CT-TPR system had higher bulk density and penetration resistance due to compaction caused by the repeated wet tillage in rice. The steady-state infiltration rate and soil aggregation (〉 0.25 mm) were higher under permanent beds and ZT and lower in the CT-TPR system. Under CT-TPR, soil aggregation was static across seasons, whereas it improved under no-till and permanent beds. Similarly, mean weight diameter of aggregates was higher under ZT and permanent beds and increased over time. The study reveals that to sustain the rice productivity, CA-based planting techniques can be more viable options. However, the long-term effects of these alternative technologies need to be studied under varying agro-ecologies in western Uttar Pradesh, India.展开更多
基金financed by the National Natural Science Foundation of China (51175499)the Beijing Natural Science Foundation, China (6112015)the Australian Centre for International Agricultural Research (ACIAR)
文摘The no-till seeders of various soil opener configurations have been shown to produce various soil physical responses in relation to soil and climate conditions, thus affecting crop performance in permanent raised beds (PRB) systems. This is particularly important in arid Northwest China where large volumes of residue are retained on the soil surface after harvest. In Zhangye, Gansu Province, China, a field trial assessed the effects of three typical (powered-chopper, powered-cutter and powered-disc) PRB no-till seeders and one traditional seeder on soil disturbance, residue cover index, bulk density, fuel consumption, plant growth, and subsequent yield. In general, seedbed conditions and crop performance for PRB no- till seeders seeded plots were better than for traditional seeded plots. In PRB cropping system, the powered-chopper seeder decreased mean soil disturbance and increased residue cover index compared to powered-disc and -cutter seeders. However, the results indicated that soil bulk density was 2.3-4.8% higher, soil temperature was 0.2-0.6℃ lower, and spring wheat emergence was 3.2-4.7% less. This was attributed to greater levels of residue cover and firmer seedbeds. Spring maize and wheat performance in the powered-cutter and -disc treatments was better (non-significant) than powered- chopper treatment. So powered disc no-till seeder, which generally provided the best planting condition and the highest yield, appeared to be the suitable seeder in heavy residue cover conditions. Considering the precision requirements for soil disturbance and residue cover, the powered strip-chopping no-till seeder could be a suitable option for PRB cropping system in Northwest China. Although these results are preliminary, they are still valuable for the design and selection of no-till seeders for PRB cropping systems in arid Northwest China.
基金the project ‘Resource Conservation Technologies for Sustainable Development of Agriculture’
文摘In recent years, conventional rice production technologies have been leading to deterioration of soil health and declining farm profitability due to high inputs of water and labor. Conservation agriculture (CA) based resource-conserving technologies i.e. zero-tillage (ZT), raised-bed planting and direct-seeded rice (DSR) have shown promise as alternatives to conventional production technologies to overcome these problems. Present study was undertaken during 2009-2012 to establish an understanding of how permanent raised bed cropping system could be practiced to save water at the field application level to improve water productivity and also have the capability to enhance productivity, profitability and soil physical quality. The results showed that among different crop establishment techniques, conventional-tilled puddle transplanted rice (CT-TPR) required 14%-25% more water than other techniques. Compared with the CT-TPR system, zero till direct-seeded rice (ZT-DSR) consumed 6%-10%less water with almost equal system productivity and demonstrated higher water productivity. Wide raised beds saved about 15%-24% water and grain yield decrease of about 8%. Direct-seeded rice after ZT or reduced tillage or on unpuddled soil provided more net income than CT-TPR. The CT-TPR system had higher bulk density and penetration resistance due to compaction caused by the repeated wet tillage in rice. The steady-state infiltration rate and soil aggregation (〉 0.25 mm) were higher under permanent beds and ZT and lower in the CT-TPR system. Under CT-TPR, soil aggregation was static across seasons, whereas it improved under no-till and permanent beds. Similarly, mean weight diameter of aggregates was higher under ZT and permanent beds and increased over time. The study reveals that to sustain the rice productivity, CA-based planting techniques can be more viable options. However, the long-term effects of these alternative technologies need to be studied under varying agro-ecologies in western Uttar Pradesh, India.