A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetr...A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetrical elliptic dual-core structure.By using the full-vector finite element method,the propagation characteristics of the proposed DC-PCF PBS are investigated.The simulation results show that the bandwidth of the proposed DC-PCF PBS can reach to 340 nm,which covers the S+C+L+U communication bands,the shortest splitting length is 1.97 mm,and the maximum extinction ratio appears near wavelength 1550 nm.Moreover,the insertion loss of the proposed DC-PCF PBS is very low.It is believed that the proposed DC-PCF PBS has important applications in the field of all-optical communication and network.展开更多
The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic ...The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic crystal fiber(DCPCF)with four symmetrical air holes, placed above and below each core, filled with magnetic fluid(MF). The switch, which utilizes a magnetic field to change the coupling length ratio of the x and y polarization modes, enables dynamic tuning of the polarization state and extinction ratio. Numerical results show that when the working length is 36.638 mm, the magneto–optical polarization switch can operate in four communication bands, i.e., 1509 nm to 1520 nm, 1544 nm to1556 nm, 1578 nm to 1591 nm, and 1611 nm to 1624 nm. Moreover, the extinction ratio(ER) is greater than 20 d B in the fiber length range of 38.5 mm to 38.7 mm, indicating that the device has a good fault tolerance for the interception of the fiber length.展开更多
The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fib...The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.展开更多
A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was ...A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.展开更多
This paper presents a theoretical study on a photonic crystal fiber plasmonic refractive index biosensor. The proposed photonic crystal fiber sensor introduces the concept of simultaneous detection with the linearly p...This paper presents a theoretical study on a photonic crystal fiber plasmonic refractive index biosensor. The proposed photonic crystal fiber sensor introduces the concept of simultaneous detection with the linearly polarized and radially polarized modes because the sensing performance of the sensor based on both modes is relatively high, which will be useful for selecting the modes to make the detection accurately. The sharp single resonant peaks of the linearly polarized mode and radially polarized mode, are stronger and more sensitive to the variation of analyte refractive index than that of any other polarized mode in this kind of photonic crystal fiber. For linearly polarized mode and radially polarized mode, the maximum sensitivities of 10448.5nm per refractive index unit and 8230.7nm per refractive index unit can be obtained, as well as 949.8 and 791.4 for figure of merits in the sensing range of 1.33-1.45, respectively. Compared with the conventional Au-metalized surface plasmon resonance sensors, our device is better and can be applied as a biosensor.展开更多
High power supercontinuum generation has witnessed rapid developments during the past few years. The mecha- nism and the latest achievements in high power supercontinuum generation are reviewed both for the continuous...High power supercontinuum generation has witnessed rapid developments during the past few years. The mecha- nism and the latest achievements in high power supercontinuum generation are reviewed both for the continuous wave pump regime and the pulsed pump regime. The challenges in scaling the average power of supereontinuum generation are analyzed. Some of our works on high power supercontinuum generation are summarized, and perspectives for the future development are discussed.展开更多
We report a supercontinuum source generated in seven-core photonic crystal fibers(PCFs) pumped by a self-made all-fiber picosecond pulsed broadband fiber amplifier. The amplifier's output average power is 60 W at 1...We report a supercontinuum source generated in seven-core photonic crystal fibers(PCFs) pumped by a self-made all-fiber picosecond pulsed broadband fiber amplifier. The amplifier's output average power is 60 W at 1150 nm with spectral width of 260 nm, and its repetition rate is 8.47 MHz with pulse width of 221 ps. With two different lengths of seven-core PCF, different output powers and spectra are obtained. When a 10 m long seven-core PCF is chosen, the output supercontinuum covers the wavelength range from 620 nm to 1700 nm, with the output power of 11.7 W. With only 2 m long seven-core PCF used in the same experiment, the wavelength of the supercontinuum spans from 680 nm to 1700 nm,with the output power of 20.4 W. The results show that the pulse width is 385 ps in the 10 m long seven-core PCF and 255 ps in the 2 m long one, respectively, due to the normal dispersion of the PCF.展开更多
Broadband normal dispersion pumping supercontinuum (SC) generation in silica photonic crystal fiber (PCF) is investigated in this paper. A 1064-nm picosecond fiber laser is used to pump silica PCF for the SC gener...Broadband normal dispersion pumping supercontinuum (SC) generation in silica photonic crystal fiber (PCF) is investigated in this paper. A 1064-nm picosecond fiber laser is used to pump silica PCF for the SC generation. The length of PCF is optimized for the most efficient stimulated Raman scattering process in the picosecond pump pulse region. The first stimulated Raman Stokes peak is located in the anomalous dispersion regime of the PCF and near the zero dispersion wavelength; thus the SC generation process can benefit from both a normal dispersion pumping scheme and an anomalous dispersion pumping scheme. The 51.7-W SC spanning from about 700 nm to beyond 1700 nm is generated with an all-fiber configuration, and the pump-to-SC conversion efficiency is up to 90%. In order to avoid the output fiber end face damage and increase the stability of the system, an improved output solution for the high power SC is proposed in our experiment. This high-efficiency near-infrared SC source is very suitable for applications in which average output power and spectral power density are firstly desirable.展开更多
The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive...The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive index,effective normalized frequency and dispersion management solitons.It is shown that the dispersion in the cladding waveguide of the total internal reflective photonic crystal fiber is a positive dispersion,and the dispersion of its core waveguide is a negative dispersion.The method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of the total internal reflective photonic crystal fiber to be close to zero and the zero dispersion point to shift to the short wavelength region.展开更多
Surface plasmon resonance induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers were proposed and analyzed. The characteristics of the polarization filter were calculated by ...Surface plasmon resonance induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers were proposed and analyzed. The characteristics of the polarization filter were calculated by finite element method (FEM). The gold film was selectively coated on the inner wall of one cladding air hole which was located near the fiber core along the y-axis direction. When the phase of core fundamental mode and surface plasmon polaritons (SPPs) mode matches, the two modes couple with each other intensely. Numerical results show that the resonance wavelength and strength vary with fiber structural parameters and the index of the infilling liquid. The fiber parameters were optimized to achieve specific functions. Under the optimal structure, we realized a dual channel filter at the communication wavelength of 1.31 μm and 1.55 μm fory polarization direction and x polarization direction. Then a single channel polarized filter at the communication wavelength of 1.55 μm is also achieved by adjusting the refractive index of the infilling liquid. The proposed polarization filters realized dual channel filtering and single channel filtering simultaneously under the same structure for the first time to the best of our knowledge.展开更多
A type of As2S3 chalcogenide glass mid-infrared dual-core photonic crystal fiber has been proposed. The dualcore photonic crystal fiber (PCF) consists of two asymmetric cores. The high polarization property and the ...A type of As2S3 chalcogenide glass mid-infrared dual-core photonic crystal fiber has been proposed. The dualcore photonic crystal fiber (PCF) consists of two asymmetric cores. The high polarization property and the coupling characteristics have been studied by using the finite dement method and mode coupling theory. Numerical results show that the birefringence at wavelength λ = 10 μm is up to 0.01386 and the coupling length can reach wavelength = 5 μm, 261 μm and 271.44 μm for x-polarized mode and y-polarized mode, respectively. It demonstrates that a 6.786-ram-long fiber can exhibit an extinction ratio of better than -10 dB and a bandwidth of 180 nm.展开更多
In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient ...In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.展开更多
Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped ...Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped at 1 550 nm(normal dispersion regime) by 1.6 ps pulses from an erbium-doped fiber laser. In addition, we conduct the numerical analyses of SC based on generalized nonlinear Schr dionger equation. The results have been applied to investigate the dominant physical processes underlie the generation of SC. We conclude that dispersion, self-phase modulation(SPM),four-wave-mixing(FWM) and Raman scattering are determinants of SC generation rather than fission of soliton in normal-dispersion PCF.展开更多
We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air hole...We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.展开更多
In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is ...In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF(6/8-PCF) is utilized as a spectral compression medium to further enhance the resolution. Simulation results show that 6-bit quantization resolution is still obtained when a 100m-long dispersion-increasing fiber(DIF)is replaced by a 6/8-PCF in spectral compression module.展开更多
Kinds of photonic crystal fibers with chalcogenide core tellurite cladding composite microstructure are proposed. The multi-core photonic crystal fiber can reach the higher nonlinearity coefficient and the larger effe...Kinds of photonic crystal fibers with chalcogenide core tellurite cladding composite microstructure are proposed. The multi-core photonic crystal fiber can reach the higher nonlinearity coefficient and the larger effective mode area. The small single-core photonic crystal fiber has a very high nonlinearity coefficient. At the wavelength λ=0.8μm, the nonlinearity coefficient can reach 31.37053 W-1·m-1, at the wavelength λ=1.55μm, the nonlinearity coefficient is 11.19686W-1·m-1.展开更多
A novel ultra-broadband polarization splitter based on a dual-core photonic crystal fiber(DC-PCF)is designed.The full-vector finite element method and coupled-mode theory are employed to investigate the characteristic...A novel ultra-broadband polarization splitter based on a dual-core photonic crystal fiber(DC-PCF)is designed.The full-vector finite element method and coupled-mode theory are employed to investigate the characteristics of the polarization splitter.According to the numerical results,a graphene-filled layer not only broadens the working bandwidth but also reduces the size of the polarization splitter.Furthermore,the fluorine-doped region and the germanium-doped region can broaden the bandwidth.Also,the 4.78 mm long polarization splitter can achieve an extinction ratio of-98.6 d B at a wavelength of 1550 nm.When extinction ratio is less than-20 d B,the range of the wavelength is 1027 nm-1723 nm with a bandwidth of 696 nm.Overall,the polarization splitter can be applied to all-optical network communication systems in the infrared and near-infrared wavelength range.展开更多
We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses i...We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.展开更多
Using a photonic crystal fiber with a zero dispersion wavelength of the fundamelItal mode at 780 nm designed and fabricated in our lab, the ultraviolet and mid-infrared continua are generated by cross-phase modulation...Using a photonic crystal fiber with a zero dispersion wavelength of the fundamelItal mode at 780 nm designed and fabricated in our lab, the ultraviolet and mid-infrared continua are generated by cross-phase modulation between red-shift solitons and blue-shift dispersive waves. The dependences of continuum on the pump power and wavelength are investigated. With the pump working at 820 nm, when the pump power increases froul 300 to 500 mW, the bandwidths of ultraviolet and mid-infrared continua change from 80 to 140 nm and 100 to 200 nm, respectively. The wavelength of ultraviolet continuum is below 246 nm, and the wavelength of mid-infrared continuum exceeds 2500 nm. Moreover, the influences of pump power on wavelength and conversion efficiency of different parts of continua are also demonstrated.展开更多
The supercontinuum (SC) generation in all-normal dispersion (ANDi) photonic-crystal fiber (PCF) pumped by high power picosecond pulses are investigated in this paper. Our results show that an octave SC may be ac...The supercontinuum (SC) generation in all-normal dispersion (ANDi) photonic-crystal fiber (PCF) pumped by high power picosecond pulses are investigated in this paper. Our results show that an octave SC may be achieved by pumping the ANDi PCF with picosecond pump pulses. However, the PCF length required may have to be lengthened to several tens of centimeters, which is much longer than that with femtosecond pump pulses. The relatively long PCF gives rise to much higher Raman gain and stronger Raman frequency shift compared to those with femtosecond pump pulses, which in turn not only cause a distorted temporal waveform and an un-flattened spectrum, but also severely degrade the coherence of the generated SC.展开更多
基金Project supported by the National Key Research and Development Project of China(Grant No.2019YFB2204001)。
文摘A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetrical elliptic dual-core structure.By using the full-vector finite element method,the propagation characteristics of the proposed DC-PCF PBS are investigated.The simulation results show that the bandwidth of the proposed DC-PCF PBS can reach to 340 nm,which covers the S+C+L+U communication bands,the shortest splitting length is 1.97 mm,and the maximum extinction ratio appears near wavelength 1550 nm.Moreover,the insertion loss of the proposed DC-PCF PBS is very low.It is believed that the proposed DC-PCF PBS has important applications in the field of all-optical communication and network.
基金supported by the National Key Research and Development Program of China “National Quality Infrastructure” (Grant No. 2021YFF0600902)。
文摘The research of high-performance polarization controllers is of great significance for expanding the application field of polarization optics. Here, a polarization switch is demonstrated by using a dual-core photonic crystal fiber(DCPCF)with four symmetrical air holes, placed above and below each core, filled with magnetic fluid(MF). The switch, which utilizes a magnetic field to change the coupling length ratio of the x and y polarization modes, enables dynamic tuning of the polarization state and extinction ratio. Numerical results show that when the working length is 36.638 mm, the magneto–optical polarization switch can operate in four communication bands, i.e., 1509 nm to 1520 nm, 1544 nm to1556 nm, 1578 nm to 1591 nm, and 1611 nm to 1624 nm. Moreover, the extinction ratio(ER) is greater than 20 d B in the fiber length range of 38.5 mm to 38.7 mm, indicating that the device has a good fault tolerance for the interception of the fiber length.
文摘The bending photonic crystal fiber grating sensor is an important role in underwater monitoring and fire alarm systems. It is studied that the resonant wavelength expression of bending long period photonic crystal fiber gratings is deduced, it is designed that a bending long period photonic crystal fiber grating sensor system, it is calculated in theory that between the bending long period photonic crystal fiber gratings sensor resonance wavelength and the grating period and the bending strain. The result is shown by calculating and analysing in theory, the grating curvature is increased by the increase of the bending strain of the grating, and the resonance wavelength of the grating sensor is drifted, the drift amount is increased, one in this grating, the drifted amount of the resonant wavelength is 0.014 nm.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475029)
文摘A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.
基金the National Natural Science Foundation of China(Grant Nos.61178026 and 60978028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20091333110010)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘This paper presents a theoretical study on a photonic crystal fiber plasmonic refractive index biosensor. The proposed photonic crystal fiber sensor introduces the concept of simultaneous detection with the linearly polarized and radially polarized modes because the sensing performance of the sensor based on both modes is relatively high, which will be useful for selecting the modes to make the detection accurately. The sharp single resonant peaks of the linearly polarized mode and radially polarized mode, are stronger and more sensitive to the variation of analyte refractive index than that of any other polarized mode in this kind of photonic crystal fiber. For linearly polarized mode and radially polarized mode, the maximum sensitivities of 10448.5nm per refractive index unit and 8230.7nm per refractive index unit can be obtained, as well as 949.8 and 791.4 for figure of merits in the sensing range of 1.33-1.45, respectively. Compared with the conventional Au-metalized surface plasmon resonance sensors, our device is better and can be applied as a biosensor.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61077076, 10904173, and 61007037)the International Technology Cooperation Program of the Technology Department, China (Grant No. 2012DFG11470)+1 种基金the Excellent Youth Foundation of Hunan Province, China (Grant No. 12JJ1010)the Fund of Innovation of NUDT, China (GrantNo. B120701)
文摘High power supercontinuum generation has witnessed rapid developments during the past few years. The mecha- nism and the latest achievements in high power supercontinuum generation are reviewed both for the continuous wave pump regime and the pulsed pump regime. The challenges in scaling the average power of supereontinuum generation are analyzed. Some of our works on high power supercontinuum generation are summarized, and perspectives for the future development are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61205047)
文摘We report a supercontinuum source generated in seven-core photonic crystal fibers(PCFs) pumped by a self-made all-fiber picosecond pulsed broadband fiber amplifier. The amplifier's output average power is 60 W at 1150 nm with spectral width of 260 nm, and its repetition rate is 8.47 MHz with pulse width of 221 ps. With two different lengths of seven-core PCF, different output powers and spectra are obtained. When a 10 m long seven-core PCF is chosen, the output supercontinuum covers the wavelength range from 620 nm to 1700 nm, with the output power of 11.7 W. With only 2 m long seven-core PCF used in the same experiment, the wavelength of the supercontinuum spans from 680 nm to 1700 nm,with the output power of 20.4 W. The results show that the pulse width is 385 ps in the 10 m long seven-core PCF and 255 ps in the 2 m long one, respectively, due to the normal dispersion of the PCF.
基金supported by the International Science and Technology Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2012DFG11470)the State Key Program of the National Natural Science Foundation of China (Grant No. 61235008)+3 种基金the National Natural Science Foundation of China (Grant Nos. 10904173,11004247,11274385,61077076,and 61007037)the Science Foundation for Distinguished Young Scholars of Hunan Province,China (Grant No. 12JJ1010)the Postgraduate Innovation Foundation of Hunan Province,China (Grant No. CX2011B034)the Postgraduate Innovation Foundation of National University of Defense Technology,China (Grant No. B110704)
文摘Broadband normal dispersion pumping supercontinuum (SC) generation in silica photonic crystal fiber (PCF) is investigated in this paper. A 1064-nm picosecond fiber laser is used to pump silica PCF for the SC generation. The length of PCF is optimized for the most efficient stimulated Raman scattering process in the picosecond pump pulse region. The first stimulated Raman Stokes peak is located in the anomalous dispersion regime of the PCF and near the zero dispersion wavelength; thus the SC generation process can benefit from both a normal dispersion pumping scheme and an anomalous dispersion pumping scheme. The 51.7-W SC spanning from about 700 nm to beyond 1700 nm is generated with an all-fiber configuration, and the pump-to-SC conversion efficiency is up to 90%. In order to avoid the output fiber end face damage and increase the stability of the system, an improved output solution for the high power SC is proposed in our experiment. This high-efficiency near-infrared SC source is very suitable for applications in which average output power and spectral power density are firstly desirable.
文摘The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber have been studied by using the models of the equivalent twin waveguide soliton coupling,effective refractive index,effective normalized frequency and dispersion management solitons.It is shown that the dispersion in the cladding waveguide of the total internal reflective photonic crystal fiber is a positive dispersion,and the dispersion of its core waveguide is a negative dispersion.The method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of the total internal reflective photonic crystal fiber to be close to zero and the zero dispersion point to shift to the short wavelength region.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505175 and 61475134)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2017203110 and F2017203193)
文摘Surface plasmon resonance induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers were proposed and analyzed. The characteristics of the polarization filter were calculated by finite element method (FEM). The gold film was selectively coated on the inner wall of one cladding air hole which was located near the fiber core along the y-axis direction. When the phase of core fundamental mode and surface plasmon polaritons (SPPs) mode matches, the two modes couple with each other intensely. Numerical results show that the resonance wavelength and strength vary with fiber structural parameters and the index of the infilling liquid. The fiber parameters were optimized to achieve specific functions. Under the optimal structure, we realized a dual channel filter at the communication wavelength of 1.31 μm and 1.55 μm fory polarization direction and x polarization direction. Then a single channel polarized filter at the communication wavelength of 1.55 μm is also achieved by adjusting the refractive index of the infilling liquid. The proposed polarization filters realized dual channel filtering and single channel filtering simultaneously under the same structure for the first time to the best of our knowledge.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874145)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010)+1 种基金the Natural Science Foundation of Hebei Province, China (Grant No. F2009000481)the China Postdoctoral Science Foundation (Grant Nos. 20080440014 and 200902046)
文摘A type of As2S3 chalcogenide glass mid-infrared dual-core photonic crystal fiber has been proposed. The dualcore photonic crystal fiber (PCF) consists of two asymmetric cores. The high polarization property and the coupling characteristics have been studied by using the finite dement method and mode coupling theory. Numerical results show that the birefringence at wavelength λ = 10 μm is up to 0.01386 and the coupling length can reach wavelength = 5 μm, 261 μm and 271.44 μm for x-polarized mode and y-polarized mode, respectively. It demonstrates that a 6.786-ram-long fiber can exhibit an extinction ratio of better than -10 dB and a bandwidth of 180 nm.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB327605 and 2010CB328304)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Research Foundation from Ministry of Education of China(Grant No.109015)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013RC1202)the China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.
基金National Natural Science Foundation of China(60578043 , 60378011) Public Construction Foundation ofBeijing City(XK100130637)
文摘Studied is the Super-continuum(SC) generation of a normal-dispersion photonic crystal fiber(PCF) using picosecond pulse excitation. In experimental analyses, a 237 nm broadband infrared continuum was generated pumped at 1 550 nm(normal dispersion regime) by 1.6 ps pulses from an erbium-doped fiber laser. In addition, we conduct the numerical analyses of SC based on generalized nonlinear Schr dionger equation. The results have been applied to investigate the dominant physical processes underlie the generation of SC. We conclude that dispersion, self-phase modulation(SPM),four-wave-mixing(FWM) and Raman scattering are determinants of SC generation rather than fission of soliton in normal-dispersion PCF.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178026)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.
文摘In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF(6/8-PCF) is utilized as a spectral compression medium to further enhance the resolution. Simulation results show that 6-bit quantization resolution is still obtained when a 100m-long dispersion-increasing fiber(DIF)is replaced by a 6/8-PCF in spectral compression module.
基金the National Natural Science Foundation of China(Grant Nos.61178026 and 60978028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20091333110010)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘Kinds of photonic crystal fibers with chalcogenide core tellurite cladding composite microstructure are proposed. The multi-core photonic crystal fiber can reach the higher nonlinearity coefficient and the larger effective mode area. The small single-core photonic crystal fiber has a very high nonlinearity coefficient. At the wavelength λ=0.8μm, the nonlinearity coefficient can reach 31.37053 W-1·m-1, at the wavelength λ=1.55μm, the nonlinearity coefficient is 11.19686W-1·m-1.
基金Project supported by the State Key Laboratory of Luminescence and Applications(Grant No.SKLA-2020-01)。
文摘A novel ultra-broadband polarization splitter based on a dual-core photonic crystal fiber(DC-PCF)is designed.The full-vector finite element method and coupled-mode theory are employed to investigate the characteristics of the polarization splitter.According to the numerical results,a graphene-filled layer not only broadens the working bandwidth but also reduces the size of the polarization splitter.Furthermore,the fluorine-doped region and the germanium-doped region can broaden the bandwidth.Also,the 4.78 mm long polarization splitter can achieve an extinction ratio of-98.6 d B at a wavelength of 1550 nm.When extinction ratio is less than-20 d B,the range of the wavelength is 1027 nm-1723 nm with a bandwidth of 696 nm.Overall,the polarization splitter can be applied to all-optical network communication systems in the infrared and near-infrared wavelength range.
基金Project supported by the National Natural Science Foundation of China(Grant No.61805274)the Major Program of the National Natural Science Foundation of China(Grant No.12034020)Research Foundation of Inner Mongolia University of China(Grant No.21200-5215108)。
文摘We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source.By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber(NL-PCF),the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm.In experiment,by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses,femtosecond laser with tuning range of 900-1290 nm is realized.The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.
基金Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300)the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2011RC0309 and 2011RC008)the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications, China (Grant No. CX201023)
文摘Using a photonic crystal fiber with a zero dispersion wavelength of the fundamelItal mode at 780 nm designed and fabricated in our lab, the ultraviolet and mid-infrared continua are generated by cross-phase modulation between red-shift solitons and blue-shift dispersive waves. The dependences of continuum on the pump power and wavelength are investigated. With the pump working at 820 nm, when the pump power increases froul 300 to 500 mW, the bandwidths of ultraviolet and mid-infrared continua change from 80 to 140 nm and 100 to 200 nm, respectively. The wavelength of ultraviolet continuum is below 246 nm, and the wavelength of mid-infrared continuum exceeds 2500 nm. Moreover, the influences of pump power on wavelength and conversion efficiency of different parts of continua are also demonstrated.
基金the National High Technology Research and Development Program of China(Grant No.2011AA030203)the National Natural Science Foundation of China(Grant No.61250017)the Key Research Program of the Chinese Academy Sciences(Grant No.KJZD-EW-W02)
文摘The supercontinuum (SC) generation in all-normal dispersion (ANDi) photonic-crystal fiber (PCF) pumped by high power picosecond pulses are investigated in this paper. Our results show that an octave SC may be achieved by pumping the ANDi PCF with picosecond pump pulses. However, the PCF length required may have to be lengthened to several tens of centimeters, which is much longer than that with femtosecond pump pulses. The relatively long PCF gives rise to much higher Raman gain and stronger Raman frequency shift compared to those with femtosecond pump pulses, which in turn not only cause a distorted temporal waveform and an un-flattened spectrum, but also severely degrade the coherence of the generated SC.