This study is an optimized extension based on the authors’previous research on the tribo-chemical reaction under constant temperature field of two-stroke internal combustion engines(ICEs).It establishes a coupled ana...This study is an optimized extension based on the authors’previous research on the tribo-chemical reaction under constant temperature field of two-stroke internal combustion engines(ICEs).It establishes a coupled analysis model that considers the tribo-chemical reactions,dynamic contact,and interface lubrication of the piston ring-cylinder liner(PRCL)system under transient temperature conditions.In this study,for the first time,the prediction of the tribofilm thickness and its influence on the surface micro-topography(the comprehensive roughness)are coupled in the working temperature field of the PRCL system,forming an effective model framework and providing a model basis and analytical basis for subsequent research.This study findings reveal that by incorporating temperature and tribofilm into the simulation model,the average friction deviation throughout the stroke decreases from 8.92%to 0.93%when compared to experimental results.Moreover,the deviation during the combustion regime reduces from 39.56%to 7.34%.The proposed coupled model provides a valuable tool for the evaluation of lubrication performance of the PRCL system and supports the analysis software forward design in two-stroke ICEs.展开更多
Currently the extruded effect,roughness to the lubricant shear thinning,temperature changes and other factors or some combination of a single factor mainly considered in the lubrication study of piston ring-cylinder.I...Currently the extruded effect,roughness to the lubricant shear thinning,temperature changes and other factors or some combination of a single factor mainly considered in the lubrication study of piston ring-cylinder.In the study of the energy equation,the oil viscosity-temperature properties,adsorption layer characteristics are usually not considered.So the theoretical research is different from the actual situation of engineering.The lubrication of piston ring-cylinder liner system in internal combustion(IC) engines is studied here based on the theory of thermal flow.An unsteady and compressible hydrodynamic lubrication model with an equivalent viscosity based on shear and extruded flow factor is derived by employing the viscosity-temperature relationship,meanwhile,characteristics such as lubricating oil’s density varying with pressure and temperature,thickness of adsorbent layer and oil film’s geometry are also considered in this model.While setting up the energy equation,the effect of lubricating oil’s volume expansion and viscous dissipation on temperature,the heat conduction along oil film’s thickness direction are considered.Finite difference equation is formed by using a first-order difference scheme in time scale and second-order difference scheme in space scale.A common diesel engine is introduced as an instance to predict the distribution of the minimum oil film thickness in the piston ring-cylinder liner system.The results of simulation calculation show that the minimum oil film thickness will decrease especially around the top dead center when the oil’s volume expansion,viscous dissipation and heat conduction are considered,which implies that:it is essential to take the thermal flow idea into account during investigating piston ring-cylinder liner system’s lubrication.A more complete piston ring-cylinder liner lubrication theory was established according to thermal fluids from the perspective of research.It is more helpful to guide the practical application of engineering to improve the accuracy of forecasting the minimum film thickness.On the other hand,distribution of the minimum oil film thickness shows a nonlinear property if the thickness of piston rings and cylinder liner adsorbent layer are involved in the analysis.It may be feasible to increase the minimum oil film thickness by varying surface roughness and material properties of piston rings and cylinder liner.展开更多
基金supported by the Shandong Provincial Natural Science Foundation(No.ZR2022QE183).
文摘This study is an optimized extension based on the authors’previous research on the tribo-chemical reaction under constant temperature field of two-stroke internal combustion engines(ICEs).It establishes a coupled analysis model that considers the tribo-chemical reactions,dynamic contact,and interface lubrication of the piston ring-cylinder liner(PRCL)system under transient temperature conditions.In this study,for the first time,the prediction of the tribofilm thickness and its influence on the surface micro-topography(the comprehensive roughness)are coupled in the working temperature field of the PRCL system,forming an effective model framework and providing a model basis and analytical basis for subsequent research.This study findings reveal that by incorporating temperature and tribofilm into the simulation model,the average friction deviation throughout the stroke decreases from 8.92%to 0.93%when compared to experimental results.Moreover,the deviation during the combustion regime reduces from 39.56%to 7.34%.The proposed coupled model provides a valuable tool for the evaluation of lubrication performance of the PRCL system and supports the analysis software forward design in two-stroke ICEs.
基金supported by National Natural Science Foundation of China (Grant No. 50975192)
文摘Currently the extruded effect,roughness to the lubricant shear thinning,temperature changes and other factors or some combination of a single factor mainly considered in the lubrication study of piston ring-cylinder.In the study of the energy equation,the oil viscosity-temperature properties,adsorption layer characteristics are usually not considered.So the theoretical research is different from the actual situation of engineering.The lubrication of piston ring-cylinder liner system in internal combustion(IC) engines is studied here based on the theory of thermal flow.An unsteady and compressible hydrodynamic lubrication model with an equivalent viscosity based on shear and extruded flow factor is derived by employing the viscosity-temperature relationship,meanwhile,characteristics such as lubricating oil’s density varying with pressure and temperature,thickness of adsorbent layer and oil film’s geometry are also considered in this model.While setting up the energy equation,the effect of lubricating oil’s volume expansion and viscous dissipation on temperature,the heat conduction along oil film’s thickness direction are considered.Finite difference equation is formed by using a first-order difference scheme in time scale and second-order difference scheme in space scale.A common diesel engine is introduced as an instance to predict the distribution of the minimum oil film thickness in the piston ring-cylinder liner system.The results of simulation calculation show that the minimum oil film thickness will decrease especially around the top dead center when the oil’s volume expansion,viscous dissipation and heat conduction are considered,which implies that:it is essential to take the thermal flow idea into account during investigating piston ring-cylinder liner system’s lubrication.A more complete piston ring-cylinder liner lubrication theory was established according to thermal fluids from the perspective of research.It is more helpful to guide the practical application of engineering to improve the accuracy of forecasting the minimum film thickness.On the other hand,distribution of the minimum oil film thickness shows a nonlinear property if the thickness of piston rings and cylinder liner adsorbent layer are involved in the analysis.It may be feasible to increase the minimum oil film thickness by varying surface roughness and material properties of piston rings and cylinder liner.