This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural ...Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural practices and the presence of adenovirus (AdV) in fruits and vegetables, manure and irrigation wastewater sampled in the urban and peri-urban perimeters of Ouagadougou. A total of 286 samples including 30 lettuces, 42 tomatoes, 30 carrots, 30 strawberries, 74 manures and 80 wastewater samples were collected from four market garden sites in and around Ouagadougou. Nested PCR was performed with specific primers to detect adenoviruses (AdVs). A face-to-face survey was carried out using a questionnaire on market garden production practices. Overall, adenoviruses prevalence was 5.9% [IC95, 3.2% - 8.7%] in all samples analyzed. It was specifically 7.14% (3/42) from tomatoes, 6.7% (2/30) from lettuces, 20% (6/30) on strawberries and 7.5% (6/80) in irrigation water. The survey showed that irrigation water came from untreated sources (dam, well, canal) and then 52% of farms used untreated manure. No farms have implemented measures to limit access by domestic and wild animals. This work shows the presence of human adenoviruses in surface irrigation water and fresh produce, which is of concern when fresh produce is consumed raw. To reduce the public health risks associated with consuming these foods, it is essential to follow good hygiene and cultivation practices.展开更多
[Objectives]This study was conducted to establish a method for determining residual coumoxystrobin in vegetables using QeEChERS-liquid chromatography-tandem mass spectrometry(QeEChERS-LC-MS/MS).[Methods]The sample was...[Objectives]This study was conducted to establish a method for determining residual coumoxystrobin in vegetables using QeEChERS-liquid chromatography-tandem mass spectrometry(QeEChERS-LC-MS/MS).[Methods]The sample was extracted by acetonitrile,and the extract was purified by QeEChERS,concentrated by nitrogen blowing,and then detected.[Results]Coumoxystrobin had a good linear relation in the range of 0.01-10.0 mg/kg,and the linear equation was y=4686.92×x+5683.28,R^(2)=0.999.The limit of detection was 0.001 mg/kg,and the limit of quantitation was 0.003 mg/kg.[Conclusions]The method has the advantages of convenient and fast operation and stable detection process,and can provide technical support for the supervision and monitoring of coumoxystrobin.展开更多
The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sou...The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sources.One potential technology,the Microbial Fuel Cell(MFC)based on rice,vegetable,and fruit wastes,can convert chemical energy into electrical energy.This study aims to determine the potency of rice,vegetable,and fruit waste assisted by Cu/Mg electrodes as a generator of electricity.The method used was a laboratory experiment,including the following steps:electrode preparation,waste sample preparation,incubation of the waste samples,construction of a reactor using rice,vegetable,and fruit waste as a source of electricity,and testing.The tests included measuring electrical conductivity,electric current,voltage,current density,and power density.Based on the test results,the maximum current and voltage values for the fruit waste samples were 5.53 V and 11.5 mA,respectively,with a current density of 2.300 mA/cm^(2) and a power density of 12.719 mW/cm^(2).The results indicate the potential for a future development.The next step in development involves determining the optimum conditions for utilizing of rice,vegetable,and fruit waste.The results of the electrical conductivity test on rice,vegetable,and fruit waste samples were 1.51,2.88,and 3.98 mS,respectively,with the highest electrical conductivity value found in the fruit waste sample.展开更多
Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still...Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still limited to the eastern region(East Nusa Tenggara,West Nusa Tenggara,Java,and South Sulawesi).Therefore,it is crucial to carry out sorghum research on drylands.This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland,Yogyakarta,Indonesia.In addition,the farm business analysis,including the feasibility of sorghum farming,was also examined.The research used a randomized complete block design(RCBD),arranged in a 5×4 factorial with 3 replicates.The first treatment consisted of 5 varieties(2 high-yielding varieties(Bioguma 1 and Kawali)and 3 local sorghum varieties(Plonco,Ketan Merah,and Hitam Wareng)).The second treatment consisted of 4 levels of planting distance,namely 50×20 cm,60×20 cm,70×15 cm,and 70×20×20 cm.Analysis of variance was used to analyze the data,where Duncan’s multiple range test(DMRT)was used post hoc.Plant height,panicle height,panicle width,panicle weight,stover weight,grains weight/plot,and productivity were significantly affected by sorghum varieties(p<0.05).However,there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments.Ketan Merah had the highest height,panicle length,and panicle width,while Bioguma 1 had the highest stover weight,panicle weight,grain weight/plot,and productivity.There was a significant linear regression equation,i.e.,productivity=0.0054–0.0003 panicle height+0.4163 grains weight/plot.Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow,except for the Ketan Merah variety.The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1.展开更多
In artificially controlled pot experiments,perennial ryegrass was mixed with other leguminous plants(white clo-ver and alfalfa)and treated with lead,zinc and cadmium(337 mg·kg^(-1),648 mg·kg^(-1),and 9 mg...In artificially controlled pot experiments,perennial ryegrass was mixed with other leguminous plants(white clo-ver and alfalfa)and treated with lead,zinc and cadmium(337 mg·kg^(-1),648 mg·kg^(-1),and 9 mg·kg^(-1),respectively)to simulate compound pollution conditions.The results showed that the concentrations of heavy metals,trans-port factors,and bioconcentration factors in mixed planting of ryegrass decreased compared with those in mono-culture.Regardless of whether heavy metal pollution was introduced,mixed planting increased the aboveground and underground biomasses of ryegrass.The different mixed planting treatments had no significant impact on the chlorophyll concentration of ryegrass.The mowing time,mixed planting treatment,and heavy metal treatment had impacts on antioxidant and osmotic adjustment substances,and there were some interactions.The mixed planting treatment did not significantly affect glutathione concentration,cysteine concentration,or nonprotein thiol.Mixed planting generally increased the nitrogen and phosphorus concentrations of ryegrass while reducing the stoichiometric ratio of carbon,nitrogen,and phosphorus.These results suggest that the mixed planting of ryegrass with legumes promotes the growth of ryegrass in the presence of high concentrations of heavy metal pollution.However,it does not enhance the ability of ryegrass to remediate heavy metal pollution in the soil.展开更多
Anchusa italica Retz.,a perennial herb,has the effects of clearing away heat and toxic materials,and killing parasites to relieve itching.It is mainly used for breast abscess,sore swollen poison,scabies and so on,and ...Anchusa italica Retz.,a perennial herb,has the effects of clearing away heat and toxic materials,and killing parasites to relieve itching.It is mainly used for breast abscess,sore swollen poison,scabies and so on,and serves as one of the commonly used medicinal materials in Uygur medicine.A.italica is distributed in Iran,Europe,Afghanistan and Kazakhstan.It is cultivated in China,and Xinjiang mostly imports it from Pakistan.This study belongs to the technical field of traditional Chinese medicine planting.The planting method solves the technical problems of sowing,field management,harvesting and processing of A.italica.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tubero...[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tuberosum L.)were selected as experimental materials and planted in the open air.The growth status,the occurrence of diseases and insect pests,and the taste evaluation of these four kinds of common vegetables were mainly studied.[Results]The results showed that the four kinds of common vegetables in Shanghai had strong growth,strong adaptability,less pests and diseases,and good taste.[Conclusions]The cowpea,cucumber,eggplant,and potato are suitable for planting in Shanghai.展开更多
Based on the arable land situation in Gejiu City,upland dry planting of indica hybrid rice is being expanded in Karst mountain areas with a rainfall of over 1400 mm and an altitude of 1100-1600 m to develop grain prod...Based on the arable land situation in Gejiu City,upland dry planting of indica hybrid rice is being expanded in Karst mountain areas with a rainfall of over 1400 mm and an altitude of 1100-1600 m to develop grain production.This paper gives a specific description of hybrid rice upland dry seedling technology,upland transplanting technology,fertilization technology,field management,weed prevention and control technology,and disease and pest control.展开更多
Vegetables are very important for human health in the era of nutritional security because they are rich in vitamins,minerals,phytochemicals,and dietary fibers.Inadequate pollination due to the decline of pollinators i...Vegetables are very important for human health in the era of nutritional security because they are rich in vitamins,minerals,phytochemicals,and dietary fibers.Inadequate pollination due to the decline of pollinators is a major obstacle in achieving high productivity of vegetables that adversely affects the quality and quantity of seed production of vegetables.Bee pollination influences the profitability and productivity of several horticultural crops,especially vegetables.Bee pollination significantly increases crop quality and yield,and it also has widespread nutritional and monetary advantages.Bees encounter various obstacles that might negatively impact their quality of life,such as habitat destruction,effects of agrochemicals,insect-pest and diseases,and changing weather scenarios.The inadvertent usage of agrochemicals contaminates the vegetables and the bee products that are eventually consumed by humans.To meet the pollination demand of cross-pollinated vegetables like cucurbits and cole crops,3−5 bee colonies/hectare are sufficient.Aspects like colony conditions,beehive densities,distribution,and time of placement of bee colonies must be considered to improve bee pollination.Bees are recognized as the most important pollinators because of their effectiveness and wider availability across the globe.To ensure food security,nutritional security,and to preserve biodiversity,bee pollination must be enhanced and given prime importance in vegetables.The integrated pollination technique,which recently arose but is in the infancy stage,links wild and managed bees on more bee-friendly farmlands to provide reliable and sufficient pollination.展开更多
The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chai...The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.展开更多
The nutritional components and utilization value of such 6 wild vegetables as Gynura divaricata, Kalimeris indica, Artemisia argyi H. Lev. & Vaniot, Artemisia selengensis, Lysimachia clethroides and Taraxacum mongoli...The nutritional components and utilization value of such 6 wild vegetables as Gynura divaricata, Kalimeris indica, Artemisia argyi H. Lev. & Vaniot, Artemisia selengensis, Lysimachia clethroides and Taraxacum mongolicum were introduced, so as to promote the development and utilization of wild vegetable resources. The culture management of these 6 wild vegetables was also introduced, so as to provide reference for culture of wild vegetables.展开更多
A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were deve...A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.展开更多
The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvl...The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony.展开更多
In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water ...In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.展开更多
Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environ...Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.展开更多
Vegetables are key to nutrition and economic security, especially for developing societies. Research in vegetables has been historically key. From early domestication efforts to modern-day breeding and value addition,...Vegetables are key to nutrition and economic security, especially for developing societies. Research in vegetables has been historically key. From early domestication efforts to modern-day breeding and value addition, research has enabled vegetable productivity to support the nutritional and economic needs of societies. Impactful research, however, requires competent research capacity and a guiding framework, in a continuously changing socio-climatic world. Vegetable research appraisal in Malawi, especially regarding capacity, focus, and a guiding framework, is lacking. By using 5 search engines and 506 analyzed publications, this review sought to first examine the existing research capacity in Malawi and assess the vegetable research focus in terms of both value chain analysis themes and specific vegetable tax. This approach allowed for the isolation and flagging out of key emerging issues from existing research that positively contextualize future vegetable research direction in Malawi. It has been found that Malawi has adequate institutional and expertise capacity to further vegetable research. The identified challenges include local funding and infrastructural capacity to leverage donor funding. Three key emerging issues of climate change, modeling, and biofortification in vegetable crops have been identified. It is suggested that, with Malawi facing the climate change challenge, research focus in these areas, will enhance not only nutritional and economic security, but also overall climate change readiness. Key to climate change readiness is the involvement of indigenous vegetable production. As a package, vegetable cultivation can play a critical role in contributing to the achievement of pillar 1 of the Malawi vision 2063, which seeks to leverage agricultural productivity and commercialization with a focus on climate change resilience.展开更多
The main toxic component of tetramine is tetramethylenedisulfotetramine(TETS).It is a sulfonamide derivative without special antidote,tasteless and tasteless,with high toxicity and high mortality.[1]It was first disco...The main toxic component of tetramine is tetramethylenedisulfotetramine(TETS).It is a sulfonamide derivative without special antidote,tasteless and tasteless,with high toxicity and high mortality.[1]It was first discovered by a German scientist Hagen in 1949.Although its use has been banned worldwide due to its high toxicity and mortality rate,it is still available in certain countries and has led to cases of intentional and unintentional poisoning.Tetramine blocksγ-neurons,leading to dizziness,fatigue,nausea,vomiting,convulsions,and other symptoms.[2-4]Due to the lack of recognized effective antidotes,many poisoned people suff ocate and die as a result of continuous spasms of the respiratory muscles.[5-7]Tetramine poisoning sometimes occurs,but it is rare for vegetables grown in tetraminecontaminated soil to cause group poisoning after being eaten.展开更多
The present work deals with the study of the thermal performances of a convective dryer for fruits and vegetables. This dryer, operating with energy generated from the combustion of biomass in a boiler connected to a ...The present work deals with the study of the thermal performances of a convective dryer for fruits and vegetables. This dryer, operating with energy generated from the combustion of biomass in a boiler connected to a water/air heat exchanger could be a solution to the problematic of energy related to drying. An experimental and theoretical study is carried out on the temperature profile inside the dryer. For this purpose, 10.3 kg of tomatoes were dried on the experimental setup. The operation lasted about 16 hours and reduced the moisture content from 93.8% to 12% in wet basis. The overall thermal efficiency of the convective dryer during the trial is 10.76%. For the theoretical study, the dryer components (boiler, water/air exchanger and drying chamber) are first modeled individually;the different sub-programs are then coupled to form the convective dryer program. The method of global heat balances combined with the one called “ε-NUT” is used. The set of equations is discretized using the implicit method of finite differences, then solved with the Gauss algorithm in Fortran 90. The theoretical results obtained are in good agreement with those measured.展开更多
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
文摘Enteric viral pathogens are responsible for numerous epidemics associated with the consumption of fresh fruit and vegetable, whether raw or minimally processed. The aim of the present study was to assess agricultural practices and the presence of adenovirus (AdV) in fruits and vegetables, manure and irrigation wastewater sampled in the urban and peri-urban perimeters of Ouagadougou. A total of 286 samples including 30 lettuces, 42 tomatoes, 30 carrots, 30 strawberries, 74 manures and 80 wastewater samples were collected from four market garden sites in and around Ouagadougou. Nested PCR was performed with specific primers to detect adenoviruses (AdVs). A face-to-face survey was carried out using a questionnaire on market garden production practices. Overall, adenoviruses prevalence was 5.9% [IC95, 3.2% - 8.7%] in all samples analyzed. It was specifically 7.14% (3/42) from tomatoes, 6.7% (2/30) from lettuces, 20% (6/30) on strawberries and 7.5% (6/80) in irrigation water. The survey showed that irrigation water came from untreated sources (dam, well, canal) and then 52% of farms used untreated manure. No farms have implemented measures to limit access by domestic and wild animals. This work shows the presence of human adenoviruses in surface irrigation water and fresh produce, which is of concern when fresh produce is consumed raw. To reduce the public health risks associated with consuming these foods, it is essential to follow good hygiene and cultivation practices.
基金Supported by Natural Science Foundation of Hunan Province(2024JJ8259).
文摘[Objectives]This study was conducted to establish a method for determining residual coumoxystrobin in vegetables using QeEChERS-liquid chromatography-tandem mass spectrometry(QeEChERS-LC-MS/MS).[Methods]The sample was extracted by acetonitrile,and the extract was purified by QeEChERS,concentrated by nitrogen blowing,and then detected.[Results]Coumoxystrobin had a good linear relation in the range of 0.01-10.0 mg/kg,and the linear equation was y=4686.92×x+5683.28,R^(2)=0.999.The limit of detection was 0.001 mg/kg,and the limit of quantitation was 0.003 mg/kg.[Conclusions]The method has the advantages of convenient and fast operation and stable detection process,and can provide technical support for the supervision and monitoring of coumoxystrobin.
文摘The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources.Consequently,many researchers are seeking alternative energy sources.One potential technology,the Microbial Fuel Cell(MFC)based on rice,vegetable,and fruit wastes,can convert chemical energy into electrical energy.This study aims to determine the potency of rice,vegetable,and fruit waste assisted by Cu/Mg electrodes as a generator of electricity.The method used was a laboratory experiment,including the following steps:electrode preparation,waste sample preparation,incubation of the waste samples,construction of a reactor using rice,vegetable,and fruit waste as a source of electricity,and testing.The tests included measuring electrical conductivity,electric current,voltage,current density,and power density.Based on the test results,the maximum current and voltage values for the fruit waste samples were 5.53 V and 11.5 mA,respectively,with a current density of 2.300 mA/cm^(2) and a power density of 12.719 mW/cm^(2).The results indicate the potential for a future development.The next step in development involves determining the optimum conditions for utilizing of rice,vegetable,and fruit waste.The results of the electrical conductivity test on rice,vegetable,and fruit waste samples were 1.51,2.88,and 3.98 mS,respectively,with the highest electrical conductivity value found in the fruit waste sample.
文摘Sorghum(Sorghum bicolor L.Moench)is an essential food crop for more than 750 million people in tropical and sub-tropical dry climates of Africa,India,and Latin America.The domestic sorghum market in Indonesia is still limited to the eastern region(East Nusa Tenggara,West Nusa Tenggara,Java,and South Sulawesi).Therefore,it is crucial to carry out sorghum research on drylands.This research aimed to investigate the effect of sorghum genotype and planting distance and their interaction toward growth and sorghum’s productivity in the Gunungkidul dryland,Yogyakarta,Indonesia.In addition,the farm business analysis,including the feasibility of sorghum farming,was also examined.The research used a randomized complete block design(RCBD),arranged in a 5×4 factorial with 3 replicates.The first treatment consisted of 5 varieties(2 high-yielding varieties(Bioguma 1 and Kawali)and 3 local sorghum varieties(Plonco,Ketan Merah,and Hitam Wareng)).The second treatment consisted of 4 levels of planting distance,namely 50×20 cm,60×20 cm,70×15 cm,and 70×20×20 cm.Analysis of variance was used to analyze the data,where Duncan’s multiple range test(DMRT)was used post hoc.Plant height,panicle height,panicle width,panicle weight,stover weight,grains weight/plot,and productivity were significantly affected by sorghum varieties(p<0.05).However,there was no significant effect from the planting distance treatment and no interaction between planting distance and varietal treatments.Ketan Merah had the highest height,panicle length,and panicle width,while Bioguma 1 had the highest stover weight,panicle weight,grain weight/plot,and productivity.There was a significant linear regression equation,i.e.,productivity=0.0054–0.0003 panicle height+0.4163 grains weight/plot.Our findings on farm business analysis suggested that four out of five tested sorghum varieties were feasible to grow,except for the Ketan Merah variety.The most economically profitable sorghum variety to grow in Gunungkidul dryland was Bioguma 1.
基金funded through projects of the National Key Research and Development Program of China(2023YFD1301401)Cheng Wei received the grant.Ministry of Science and Technology of the People’s Republic of China(https://www.most.gov.cn/index.html,accessed on 19/03/2024)+1 种基金And the Guizhou Provincial Science and Technology Projects(QKHPTRC-CXTD[2022]1011)Chao Chen received the grant.Guizhou Provincial Department of Science and Technology(https://kjt.guizhou.gov.cn/,accessed on 19/03/2024).
文摘In artificially controlled pot experiments,perennial ryegrass was mixed with other leguminous plants(white clo-ver and alfalfa)and treated with lead,zinc and cadmium(337 mg·kg^(-1),648 mg·kg^(-1),and 9 mg·kg^(-1),respectively)to simulate compound pollution conditions.The results showed that the concentrations of heavy metals,trans-port factors,and bioconcentration factors in mixed planting of ryegrass decreased compared with those in mono-culture.Regardless of whether heavy metal pollution was introduced,mixed planting increased the aboveground and underground biomasses of ryegrass.The different mixed planting treatments had no significant impact on the chlorophyll concentration of ryegrass.The mowing time,mixed planting treatment,and heavy metal treatment had impacts on antioxidant and osmotic adjustment substances,and there were some interactions.The mixed planting treatment did not significantly affect glutathione concentration,cysteine concentration,or nonprotein thiol.Mixed planting generally increased the nitrogen and phosphorus concentrations of ryegrass while reducing the stoichiometric ratio of carbon,nitrogen,and phosphorus.These results suggest that the mixed planting of ryegrass with legumes promotes the growth of ryegrass in the presence of high concentrations of heavy metal pollution.However,it does not enhance the ability of ryegrass to remediate heavy metal pollution in the soil.
基金Supported by Scientific Research Project of Central Asian Center of Drug Discovery and Development,Chinese Academy of Sciences(CAM202204).
文摘Anchusa italica Retz.,a perennial herb,has the effects of clearing away heat and toxic materials,and killing parasites to relieve itching.It is mainly used for breast abscess,sore swollen poison,scabies and so on,and serves as one of the commonly used medicinal materials in Uygur medicine.A.italica is distributed in Iran,Europe,Afghanistan and Kazakhstan.It is cultivated in China,and Xinjiang mostly imports it from Pakistan.This study belongs to the technical field of traditional Chinese medicine planting.The planting method solves the technical problems of sowing,field management,harvesting and processing of A.italica.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
基金Supported by the Science and Technology Project for Agriculture Development of Shanghai Agricultural Commission[Hu Nong Ke Tui Zi(2019)No.1-8]Science and Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality(19DZ1203501)。
文摘[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tuberosum L.)were selected as experimental materials and planted in the open air.The growth status,the occurrence of diseases and insect pests,and the taste evaluation of these four kinds of common vegetables were mainly studied.[Results]The results showed that the four kinds of common vegetables in Shanghai had strong growth,strong adaptability,less pests and diseases,and good taste.[Conclusions]The cowpea,cucumber,eggplant,and potato are suitable for planting in Shanghai.
文摘Based on the arable land situation in Gejiu City,upland dry planting of indica hybrid rice is being expanded in Karst mountain areas with a rainfall of over 1400 mm and an altitude of 1100-1600 m to develop grain production.This paper gives a specific description of hybrid rice upland dry seedling technology,upland transplanting technology,fertilization technology,field management,weed prevention and control technology,and disease and pest control.
文摘Vegetables are very important for human health in the era of nutritional security because they are rich in vitamins,minerals,phytochemicals,and dietary fibers.Inadequate pollination due to the decline of pollinators is a major obstacle in achieving high productivity of vegetables that adversely affects the quality and quantity of seed production of vegetables.Bee pollination influences the profitability and productivity of several horticultural crops,especially vegetables.Bee pollination significantly increases crop quality and yield,and it also has widespread nutritional and monetary advantages.Bees encounter various obstacles that might negatively impact their quality of life,such as habitat destruction,effects of agrochemicals,insect-pest and diseases,and changing weather scenarios.The inadvertent usage of agrochemicals contaminates the vegetables and the bee products that are eventually consumed by humans.To meet the pollination demand of cross-pollinated vegetables like cucurbits and cole crops,3−5 bee colonies/hectare are sufficient.Aspects like colony conditions,beehive densities,distribution,and time of placement of bee colonies must be considered to improve bee pollination.Bees are recognized as the most important pollinators because of their effectiveness and wider availability across the globe.To ensure food security,nutritional security,and to preserve biodiversity,bee pollination must be enhanced and given prime importance in vegetables.The integrated pollination technique,which recently arose but is in the infancy stage,links wild and managed bees on more bee-friendly farmlands to provide reliable and sufficient pollination.
基金National Natural Science Foundation of China(32301718)Chinese Academy of Agricultural Sciences under the Special Institute-level Coordination Project for Basic Research Operating Costs(S202328)。
文摘The cold chain in the production area of fruits and vegetables is the primary link to reduce product loss and improve product quality,but it is also a weak link.With the application of big data technology in cold chain logistics,intelligent devices,and technologies have become important carriers for improving the efficiency of cold chain logistics in fruit and vegetable production areas,extending the shelf life of fruits and vegetables,and reducing fruit and vegetable losses.They have many advantages in fruit and vegetable pre-cooling,sorting and packaging,testing,warehousing,transportation,and other aspects.This article summarizes the rapidly developing and widely used intelligent technologies at home and abroad in recent years,including automated guided vehicle intelligent handling based on electromagnetic or optical technology,intelligent sorting based on sensors,electronic optics,and other technologies,intelligent detection based on computer vision technology,intelligent transportation based on perspective imaging technology,etc.It analyses and studies the innovative research and achievements of various scholars in applying intelligent technology in fruit and vegetable cold chain storage,sorting,detection,transportation,and other links,and improves the efficiency of fruit and vegetable cold chain logistics.However,applying intelligent technology in fruit and vegetable cold chain logistics also faces many problems.The challenges of high cost,difficulty in technological integration,and talent shortages have limited the development of intelligent technology in the field of fruit and vegetable cold chains.To solve the current problems,it is proposed that costs be controlled through independent research and development,technological innovation,and other means to lower the entry threshold for small enterprises.Strengthen integrating intelligent technology and cold chain logistics systems to improve data security and system compatibility.At the same time,the government should introduce relevant policies,provide necessary financial support,and establish talent training mechanisms.Accelerate the development and improvement of intelligent technology standards in the field of cold chain logistics.Through technological innovation,cost control,talent cultivation,and policy guidance,we aim to promote the upgrading of the agricultural industry and provide ideas for improving the quality and efficiency of fruit and vegetable cold chain logistics.
基金Supported by Fund for Independent Innovation of Agricultural Science in Jiangsu Province[CX(15)1050]~~
文摘The nutritional components and utilization value of such 6 wild vegetables as Gynura divaricata, Kalimeris indica, Artemisia argyi H. Lev. & Vaniot, Artemisia selengensis, Lysimachia clethroides and Taraxacum mongolicum were introduced, so as to promote the development and utilization of wild vegetable resources. The culture management of these 6 wild vegetables was also introduced, so as to provide reference for culture of wild vegetables.
基金supported by National Key Research and Development Program of China(2018YFC1603400)Special Technical Support Project of State Administration for Market Regulation(2019YJ009).
文摘A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31670663).
文摘The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony.
基金Universiti Malaysia Sarawak for the support of this research。
文摘In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.
基金financially supported by the National Key Research and Development Program of China(2022YFD1900501)National Natural Science Foundation of China(51861125103)。
文摘Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales.
文摘Vegetables are key to nutrition and economic security, especially for developing societies. Research in vegetables has been historically key. From early domestication efforts to modern-day breeding and value addition, research has enabled vegetable productivity to support the nutritional and economic needs of societies. Impactful research, however, requires competent research capacity and a guiding framework, in a continuously changing socio-climatic world. Vegetable research appraisal in Malawi, especially regarding capacity, focus, and a guiding framework, is lacking. By using 5 search engines and 506 analyzed publications, this review sought to first examine the existing research capacity in Malawi and assess the vegetable research focus in terms of both value chain analysis themes and specific vegetable tax. This approach allowed for the isolation and flagging out of key emerging issues from existing research that positively contextualize future vegetable research direction in Malawi. It has been found that Malawi has adequate institutional and expertise capacity to further vegetable research. The identified challenges include local funding and infrastructural capacity to leverage donor funding. Three key emerging issues of climate change, modeling, and biofortification in vegetable crops have been identified. It is suggested that, with Malawi facing the climate change challenge, research focus in these areas, will enhance not only nutritional and economic security, but also overall climate change readiness. Key to climate change readiness is the involvement of indigenous vegetable production. As a package, vegetable cultivation can play a critical role in contributing to the achievement of pillar 1 of the Malawi vision 2063, which seeks to leverage agricultural productivity and commercialization with a focus on climate change resilience.
基金supported by a grant from the National Key R&D Program of China(2019YFC16063000).
文摘The main toxic component of tetramine is tetramethylenedisulfotetramine(TETS).It is a sulfonamide derivative without special antidote,tasteless and tasteless,with high toxicity and high mortality.[1]It was first discovered by a German scientist Hagen in 1949.Although its use has been banned worldwide due to its high toxicity and mortality rate,it is still available in certain countries and has led to cases of intentional and unintentional poisoning.Tetramine blocksγ-neurons,leading to dizziness,fatigue,nausea,vomiting,convulsions,and other symptoms.[2-4]Due to the lack of recognized effective antidotes,many poisoned people suff ocate and die as a result of continuous spasms of the respiratory muscles.[5-7]Tetramine poisoning sometimes occurs,but it is rare for vegetables grown in tetraminecontaminated soil to cause group poisoning after being eaten.
文摘The present work deals with the study of the thermal performances of a convective dryer for fruits and vegetables. This dryer, operating with energy generated from the combustion of biomass in a boiler connected to a water/air heat exchanger could be a solution to the problematic of energy related to drying. An experimental and theoretical study is carried out on the temperature profile inside the dryer. For this purpose, 10.3 kg of tomatoes were dried on the experimental setup. The operation lasted about 16 hours and reduced the moisture content from 93.8% to 12% in wet basis. The overall thermal efficiency of the convective dryer during the trial is 10.76%. For the theoretical study, the dryer components (boiler, water/air exchanger and drying chamber) are first modeled individually;the different sub-programs are then coupled to form the convective dryer program. The method of global heat balances combined with the one called “ε-NUT” is used. The set of equations is discretized using the implicit method of finite differences, then solved with the Gauss algorithm in Fortran 90. The theoretical results obtained are in good agreement with those measured.