Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacit...Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the tougheni...Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.展开更多
In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene...In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.展开更多
A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifie...A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifier(TPE/WBG-2/CaCO_(3)).The effects of differentβ-nucleating agents and ternary compound modifier on the mechanical properties and crystallization behavior of PPR were analyzed.The results show that,compared with pure PPR materials,both WBG-2 and TMB-5 could significantly improve the impact strength of PPR.The crystallization temperature of PPR increased with the addition ofβ-nucleating agent.The modified PPR prepared with ternary compound modifier showed the most excellent comprehensive properties.展开更多
Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance,time,and economy.This paper investigates the effects of water content and polypropylene fiber dosage a...Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance,time,and economy.This paper investigates the effects of water content and polypropylene fiber dosage and length on loess’s unconfined compressive strength(UCS)according to the central composite response surface design test procedure.The water content is 11%–25%,the mass ratio of fiber to soil is 0.1%–0.9%,and the fiber length ranges from 6–18 mm.The response surface method(RSM)developed full quadratic models of different variables with response values.After analysis of variance(ANOVA),the mathematical model developed in this study was statistically significant(p≤0.05)and applicable to the optimization process.The optimization results showed that the optimal water content values,fiber amount,and fiber length were 16.41%,0.579%,and 14.90 mm,respectively.The unconfined compressive strength of the optimized specimens was increased by 288.017 kPa.The research results can reference the design and construction of fiber-reinforced soil in practical projects such as road base engineering and foundation engineering.展开更多
BACKGROUND Chronic large to massive rotator cuff tears are difficult to treat and re-tears are common even after surgical repair.We propose using a synthetic polypropylene mesh to increase the tensile strength of rota...BACKGROUND Chronic large to massive rotator cuff tears are difficult to treat and re-tears are common even after surgical repair.We propose using a synthetic polypropylene mesh to increase the tensile strength of rotator cuff repairs.We hypothesize that using a polypropylene mesh to bridge the repair of large rotator cuff tears will increase the ultimate failure load of the repair.AIM To investigate the mechanical properties of rotator cuff tears repaired with a polypropylene interposition graft in an ovine ex-vivo model.METHODS A 20 mm length of infraspinatus tendon was resected from fifteen fresh sheep shoulders to simulate a large tear.We used a polypropylene mesh as an interposition graft between the ends of the tendon for repair.In seven specimens,the mesh was secured to remnant tendon by continuous stitching while mattress stitches were used for eight specimens.Five specimens with an intact tendon were tested.The specimens underwent cyclic loading to determine the ultimate failure load and gap formation.RESULTS The mean gap formation after 3000 cycles was 1.67 mm in the continuous group,and 4.16 mm in the mattress group(P=0.001).The mean ultimate failure load was significantly higher at 549.2 N in the continuous group,426.4 N in the mattress group and 370 N in the intact group(P=0.003).CONCLUSION The use of a polypropylene mesh is biomechanically suitable as an interposition graft for large irreparable rotator cuff tears.展开更多
The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pu...The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.展开更多
Polypropylene(PP)grease holds great potential for special industrial applications.In this study,synthetic conditions,thickener content,and the ratio of two different molecular weight PPs were investigated systematical...Polypropylene(PP)grease holds great potential for special industrial applications.In this study,synthetic conditions,thickener content,and the ratio of two different molecular weight PPs were investigated systematically using a rheometer,scanning electron microscope,X-ray diffraction,Fourier transform infrared spectrometer,oscillating tribometer,and 3D surface profiler measurements.The results showed that suitable synthetic conditions are two quenching cycles,and the synthetic temperature and time is 240℃for 12 h.The rheological analysis showed that thickener content and different proportions of the two PP molecular weights have a significant influence on the rheological properties of PP grease.High molecular weight PP(H-PP)has a stronger thickening ability than low molecular weight PP(L-PP).The higher the amount of H-PP in the fixed thickener content or the higher the thickener content with a specific proportion,the higher the viscoelasticity of PP grease.The tribological performance is related to the rheological properties.The proportion of two different molecular weight PPs in the thickener content should be appropriate;excessive H-PP content leads to lubrication failure.展开更多
Wastes from polypropylene(PP)packages are accumulating every year because it is one of the most widely consumed and short lifecycle products.This paper aims to develop low thermal conductive and fire-retardant materia...Wastes from polypropylene(PP)packages are accumulating every year because it is one of the most widely consumed and short lifecycle products.This paper aims to develop low thermal conductive and fire-retardant materials from post-consumer PP(pPP)packages.Ammonium polyphosphate(APP)and hollow glass microsphere(HGM)were further added to improve the fire retardancy and thermal conductivity of pPP.The influence of APP and HGM on the mechanical and thermal properties,fire retardancy and thermal conductivity of pPP were investigated and compared with that of virgin PP(vPP).HGM was constantly added at 5 wt%while the content of APP was varied from 5 to 20 wt%.Experimental results showed that the tensile and flexural strengths were reduced with increasing APP concentrations.A morphological study confirmed the poor interfacial adhesion and debonding of each component during the applied load.Formulations containing APP less than 10 wt%did not show a satisfying fire retardancy rating due to the long self-extinguishing time.Further flame dipping and cotton ignition were observed for these formulations.With 15 and 20 wt%APP,the fire rating was significantly improved from no rating to V-0.The conductive heat transfer coefficient(k)was reduced by the presence of HGM.Based on these results,the formulation with 15 and 20 wt%could be used as a low k,fire-retardant building material.展开更多
Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me...Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.展开更多
From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fi...From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fibers have many advantages over synthetic ones.Polypropylene banana fiber composites(PPBC)are prepared using untreated and alkali-treated banana fibers at 10-25%by weight of the fiber loading.The thermal properties of polypropylene natural fiber composites are very important for technological uses.Thermogravimetric measurements show that the incorporation of banana fiber into PP enhances the thermal stability of composites containing treated fibers,in comparison with untreated fibers.A composite of biodegradable polypropylene(PP)reinforced with short banana natural fibers was prepared by melt blending followed by a hot press molding system.The thermal properties of matrix materials were studied using thermogravimetric analyzers TGA units.It is observed that the introduction of short banana fibers slightly improved the thermo oxidative stability of PP-banana composites.Physical and chemical changes occurred through dehydration,phase transition,molecular orientation,crystallinity disruption,oxidation and decomposition,and incorporation of several functional groups.Systematic investigations of the thermal behavior of polymers in gas,vacuum or inert atmosphere give the knowledge of how change takes place in polymers.To understand such changes thermogravimetric analysis(TGA)and thermal analysis(TG)were performed.It is observed reinforcement of short banana fiber leads to little improvement in the thermooxidative stability of PPBC.Due to the enhancement of thermo-mechanical properties,such composites may be used as building materials namely roof materials,selling materials and many other engineering applications.展开更多
Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonat...Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.展开更多
Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of f...Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of ferrous sulfate, sodium nitrate, methanol and glucose on the degree of grafting was demonstrated. The function of the different additives was compared by the grafting of different monomers (AAc and AAm). The results show that the four of these additives are elective on the grafting of AAc. Only two of these additives, ferrous sulfate and methanol were effective on the grafting of AAm.展开更多
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA)....Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.展开更多
Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched pris...Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched prisms with the size of 100?mm×100?mm×500?mm to investigate the effect of hybrid fibres on crack arresting. The research results show that there is a positive synergy effect between large steel fibres and polypropylene fibres on the load bearing capacity in the small displacement range. But this synergy effect disappears in the large displacement range. The large and strong steel fibre is better than soft polypropylene fibre and small steel fibre in the aspect of energy absorption capacity in the large displacement range. The static usage limitation for the hybrid fibres concrete with “wide peak' or “multi peaks' load CMOD pattern should be carefully selected. The ultimate load bearing capacity and the crack width or CMOD at this load level should be jointly considered.展开更多
MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fr...MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces.展开更多
基金the financial support from Australian Research Council(ARC)(Grant No.DP220100307).
文摘Polypropylene(PP) fibres have primarily used to control shrinkage cracks or mitigate explosive spalling in concrete structures exposed to fire or subjected to impact/blast loads, with limited investigations on capacity improvement. This study unveils the possibility of using PP micro-fibres to improve the impact behaviour of fibre-reinforced ultra-high-performance concrete(FRUHPC) columns. Results show that the addition of fibres significantly improves the impact behaviour of FRUHPC columns by shifting the failure mechanism from brittle shear to favourable flexural failure. The addition of steel or PP fibres affected the impact responses differently. Steel fibres considerably increased the peak impact force(up to 18%) while PP micro-fibres slightly increased the peak(3%-4%). FRUHPC significantly reduced the maximum midheight displacement by up to 30%(under 20°impact) and substantially improved the displacement recovery by up to 100%(under 20° impact). FRUHPC with steel fibres significantly improved the energy absorption while those with PP micro-fibres reduced the energy absorption, which is different from the effect of PP-macro fibre reported in the literature. The optimal fibre content for micro-PP fibres is 1% due to its minimal fibre usage and low peak and residual displacement. This study highlights the potential of FRUHPC as a promising material for impact-resistant structures by creating a more favourable flexural failure mechanism, enhancing ductility and toughness under impact loading, and advancing the understanding of the role of fibres in structural performance.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
基金financially supported by the National Natural Science Foundation of China(No.52174095)the Top Innovative Talents Cultivation Fund for Doctoral Postgraduates(No.BBJ2023054).
文摘Using aeolian sand(AS)for goaf backfilling allows coordination of green mining and AS control.Cemented AS backfill(CASB)exhibits brittle fracture.Polypropylene(PP)fibers are good toughening materials.When the toughening effect of fibers is analyzed,their influence on the slurry conveying performance should also be considered.Additionally,cement affects the interactions among the hydration products,fibers,and aggregates.In this study,the effects of cement content(8wt%,9wt%,and 10wt%)and PP fiber length(6,9,and 12 mm)and dosage(0.05wt%,0.1wt%,0.15wt%,0.2wt%,and 0.25wt%)on fluidity and mechanical properties of the fibertoughened CASB(FCASB)were analyzed.The results indicated that with increases in the three aforementioned factors,the slump flow decreased,while the rheological parameters increased.Uniaxial compressive strength(UCS)increased with the increase of cement content and fiber length,and with an increase in fiber dosage,it first increased and then decreased.The strain increased with the increase of fiber dosage and length.The effect of PP fibers became more pronounced with the increase of cement content.Digital image correlation(DIC)test results showed that the addition of fibers can restrain the peeling of blocks and the expansion of fissure,and reduce the stress concentration of the FCASB.Scanning electron microscopy(SEM)test indicated that the functional mechanisms of fibers mainly involved the interactions of fibers with the hydration products and matrix and the spatial distribution of fibers.On the basis of single-factor analysis,the response surface method(RSM)was used to analyze the effects of the three aforementioned factors and their interaction terms on the UCS.The influence surface of the two-factor interaction terms and the three-dimensional scatter plot of the three-factor coupling were established.In conclusion,the response law of the FCASB properties under the effects of cement and PP fibers were obtained,which provides theoretical and engineering guidance for FCASB filling.
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
文摘In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.
基金Funded by the Natural Science Foundation of Liaoning Province of China(No.20180550432)Natural Science Foundation for Young Doctoral Research(No.2020-BS-158)Basic Scientific Research Project of Colleges and Universities of Liaoning Provincial Department of Education(No.LJKQZ2021060)。
文摘A novel polypropylene random(PPR)composite materials with optimized properties was developed by addingβ-nucleating compound agents(rare earth complex WBG-2 and aryl amide derivative TMB-5)and ternary compound modifier(TPE/WBG-2/CaCO_(3)).The effects of differentβ-nucleating agents and ternary compound modifier on the mechanical properties and crystallization behavior of PPR were analyzed.The results show that,compared with pure PPR materials,both WBG-2 and TMB-5 could significantly improve the impact strength of PPR.The crystallization temperature of PPR increased with the addition ofβ-nucleating agent.The modified PPR prepared with ternary compound modifier showed the most excellent comprehensive properties.
文摘Fiber-reinforced soils have been of great interest to experimenters for building foundations’strength performance,time,and economy.This paper investigates the effects of water content and polypropylene fiber dosage and length on loess’s unconfined compressive strength(UCS)according to the central composite response surface design test procedure.The water content is 11%–25%,the mass ratio of fiber to soil is 0.1%–0.9%,and the fiber length ranges from 6–18 mm.The response surface method(RSM)developed full quadratic models of different variables with response values.After analysis of variance(ANOVA),the mathematical model developed in this study was statistically significant(p≤0.05)and applicable to the optimization process.The optimization results showed that the optimal water content values,fiber amount,and fiber length were 16.41%,0.579%,and 14.90 mm,respectively.The unconfined compressive strength of the optimized specimens was increased by 288.017 kPa.The research results can reference the design and construction of fiber-reinforced soil in practical projects such as road base engineering and foundation engineering.
文摘BACKGROUND Chronic large to massive rotator cuff tears are difficult to treat and re-tears are common even after surgical repair.We propose using a synthetic polypropylene mesh to increase the tensile strength of rotator cuff repairs.We hypothesize that using a polypropylene mesh to bridge the repair of large rotator cuff tears will increase the ultimate failure load of the repair.AIM To investigate the mechanical properties of rotator cuff tears repaired with a polypropylene interposition graft in an ovine ex-vivo model.METHODS A 20 mm length of infraspinatus tendon was resected from fifteen fresh sheep shoulders to simulate a large tear.We used a polypropylene mesh as an interposition graft between the ends of the tendon for repair.In seven specimens,the mesh was secured to remnant tendon by continuous stitching while mattress stitches were used for eight specimens.Five specimens with an intact tendon were tested.The specimens underwent cyclic loading to determine the ultimate failure load and gap formation.RESULTS The mean gap formation after 3000 cycles was 1.67 mm in the continuous group,and 4.16 mm in the mattress group(P=0.001).The mean ultimate failure load was significantly higher at 549.2 N in the continuous group,426.4 N in the mattress group and 370 N in the intact group(P=0.003).CONCLUSION The use of a polypropylene mesh is biomechanically suitable as an interposition graft for large irreparable rotator cuff tears.
基金supported by National Natural Science Foundation of China (Nos. 52037004, 51777091 and52250410350)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_1314)。
文摘The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.
基金the financial support provided by the National Natural Science Foundation of China Project (U21A20315,21978186)the Fund for Shanxi“1331 Project” (1331)。
文摘Polypropylene(PP)grease holds great potential for special industrial applications.In this study,synthetic conditions,thickener content,and the ratio of two different molecular weight PPs were investigated systematically using a rheometer,scanning electron microscope,X-ray diffraction,Fourier transform infrared spectrometer,oscillating tribometer,and 3D surface profiler measurements.The results showed that suitable synthetic conditions are two quenching cycles,and the synthetic temperature and time is 240℃for 12 h.The rheological analysis showed that thickener content and different proportions of the two PP molecular weights have a significant influence on the rheological properties of PP grease.High molecular weight PP(H-PP)has a stronger thickening ability than low molecular weight PP(L-PP).The higher the amount of H-PP in the fixed thickener content or the higher the thickener content with a specific proportion,the higher the viscoelasticity of PP grease.The tribological performance is related to the rheological properties.The proportion of two different molecular weight PPs in the thickener content should be appropriate;excessive H-PP content leads to lubrication failure.
基金supported by the Energy Conservation and Promotion Fund Office(Contract No.014/2562)in collaboration with Thailand Science Research and Innovation(TSRI)and Srinakharinwirot University(Contract No.034/2564).
文摘Wastes from polypropylene(PP)packages are accumulating every year because it is one of the most widely consumed and short lifecycle products.This paper aims to develop low thermal conductive and fire-retardant materials from post-consumer PP(pPP)packages.Ammonium polyphosphate(APP)and hollow glass microsphere(HGM)were further added to improve the fire retardancy and thermal conductivity of pPP.The influence of APP and HGM on the mechanical and thermal properties,fire retardancy and thermal conductivity of pPP were investigated and compared with that of virgin PP(vPP).HGM was constantly added at 5 wt%while the content of APP was varied from 5 to 20 wt%.Experimental results showed that the tensile and flexural strengths were reduced with increasing APP concentrations.A morphological study confirmed the poor interfacial adhesion and debonding of each component during the applied load.Formulations containing APP less than 10 wt%did not show a satisfying fire retardancy rating due to the long self-extinguishing time.Further flame dipping and cotton ignition were observed for these formulations.With 15 and 20 wt%APP,the fire rating was significantly improved from no rating to V-0.The conductive heat transfer coefficient(k)was reduced by the presence of HGM.Based on these results,the formulation with 15 and 20 wt%could be used as a low k,fire-retardant building material.
基金supported by the National Natural Science Foundation of China (41731281,42071078)the National Key Basic Research Program of China (No.2012CB026104)Science and Technology Project of Qinghai,China (2021-GX-121).
文摘Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.
文摘From the environmental consideration,it would be very interesting to use natural fibers such as banana,jute or coir as reinforcement materials instead of artificial fibers or any kind of synthetic materials.Natural fibers have many advantages over synthetic ones.Polypropylene banana fiber composites(PPBC)are prepared using untreated and alkali-treated banana fibers at 10-25%by weight of the fiber loading.The thermal properties of polypropylene natural fiber composites are very important for technological uses.Thermogravimetric measurements show that the incorporation of banana fiber into PP enhances the thermal stability of composites containing treated fibers,in comparison with untreated fibers.A composite of biodegradable polypropylene(PP)reinforced with short banana natural fibers was prepared by melt blending followed by a hot press molding system.The thermal properties of matrix materials were studied using thermogravimetric analyzers TGA units.It is observed that the introduction of short banana fibers slightly improved the thermo oxidative stability of PP-banana composites.Physical and chemical changes occurred through dehydration,phase transition,molecular orientation,crystallinity disruption,oxidation and decomposition,and incorporation of several functional groups.Systematic investigations of the thermal behavior of polymers in gas,vacuum or inert atmosphere give the knowledge of how change takes place in polymers.To understand such changes thermogravimetric analysis(TGA)and thermal analysis(TG)were performed.It is observed reinforcement of short banana fiber leads to little improvement in the thermooxidative stability of PPBC.Due to the enhancement of thermo-mechanical properties,such composites may be used as building materials namely roof materials,selling materials and many other engineering applications.
文摘Aim To determine the effect of silane grafted polypropylene on the property of different filler/polypropylene composites. Methods Polypropylene (PP) composites filled with talc(Ta), baryta sulfate and calcium carbonate coupled with silane grafted polypropylene (PP-g-Si) were made, their mechanical properties and thermal properties were investigated, respectively. Results As compared with the non-coupled composites, the mechanical properties of PP/Ta/PP-g-Si composites were improved to some extent, though the values of tensile modulus and the strain at peak were decreased. But for PP/BaSO4 and PP/CaCO3 composites, the values of their mechanical properties varied slightly or even decreased with increasing PP-g-Si content within the experimental component. Meanwhile, PP-g-Si also affected the melting and crystallization behavior of PP in the composites. Conclusion PP-g-Si offers compatibilization in PP/Ta composites, but offers no-compatibilization in PP/BaSO4 and PP/CaCO3 composites within the extent of the present range of PP-g-Si, which shows that PP-g-Si can be used as the macromolecular coupling agent of PP and Ta composite.
文摘Grafting of acrylic acid (AAc) and acrylamide (AAm) onto preirradiated PP film was performed in aqueous solution of AAc and AAm, respectively. Electron beam accelerator was used as irradiation source. The effect of ferrous sulfate, sodium nitrate, methanol and glucose on the degree of grafting was demonstrated. The function of the different additives was compared by the grafting of different monomers (AAc and AAm). The results show that the four of these additives are elective on the grafting of AAc. Only two of these additives, ferrous sulfate and methanol were effective on the grafting of AAm.
基金supported by the National Natural Science Foundation of China (Grant No. 30871966)
文摘Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.
文摘Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched prisms with the size of 100?mm×100?mm×500?mm to investigate the effect of hybrid fibres on crack arresting. The research results show that there is a positive synergy effect between large steel fibres and polypropylene fibres on the load bearing capacity in the small displacement range. But this synergy effect disappears in the large displacement range. The large and strong steel fibre is better than soft polypropylene fibre and small steel fibre in the aspect of energy absorption capacity in the large displacement range. The static usage limitation for the hybrid fibres concrete with “wide peak' or “multi peaks' load CMOD pattern should be carefully selected. The ultimate load bearing capacity and the crack width or CMOD at this load level should be jointly considered.
基金This paper was supported by National 863 Program (2002AA245141)national Foundation of Application of Agricul-tural Scientific and Technological Achievements (2006GB23600450)
文摘MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces.