A novel source-connected field plate structure, featuring the same photolithography mask as the gate electrode, is proposed as an improvement over the conventional field plate (FP) techniques to enhance the frequenc...A novel source-connected field plate structure, featuring the same photolithography mask as the gate electrode, is proposed as an improvement over the conventional field plate (FP) techniques to enhance the frequency performance in GaN-based HEMTs. The influences of the field plate on frequency and breakdown performance are investigated simul- taneously by using a two-dimensional physics-based simulation. Compared with the conventional T-gate structures with a field plate length of 1.2 gm, this field plate structure can induce the small signal power gain at 10 GHz to increase by 5-9.5 dB, which depends on the distance between source FP and dramatically shortened gate FE This technique minimizes the parasitic capacitances, especially the gate-to-drain capacitance, showing a substantial potential for millimeter-wave, high power applications.展开更多
Antenna array gain is a relative measure of performance defined differently in various literature. Most definitions of gain are not power consistent, and thus cannot be used directly in link budget analysis. In this s...Antenna array gain is a relative measure of performance defined differently in various literature. Most definitions of gain are not power consistent, and thus cannot be used directly in link budget analysis. In this short paper, we present a power correction factor for common definitions of power gain of antenna arrays that allows them to be used in standard link budget calculations.展开更多
This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhan...This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.展开更多
High power vertical cavity surface emitting lasers(VCSEKLs) with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three ...High power vertical cavity surface emitting lasers(VCSEKLs) with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structures, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration were used to improve the beam quality and the heat dissipation. A maximum output power of 1.4 W was demonstrated at CW operation for a 400 μm-diameter device. The lasing wavelength shifted to 995.5 nm with a FWHM of 2 nm at a current of 4.8 A due to the internal heating and the absence of active water cooling. A ring-shape far field pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8 A.展开更多
This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a sing...This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.展开更多
In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by L...In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by Lyapunov method, theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. The highlight point is that it not only inherits all the essences of Singular perturbation and Equal ratio gain techniques but also makes up for their shortcomings, and then the conservatism of control input can be improved by compromising the Power ratio coefficients. Theoretical analysis, design example and simulation results show that Power ratio gain technique is a simple, practical and powerful tool to deal with the uncertain nonlinear system.展开更多
Night,Mother is a famous play about female identification.It is about Jessie,a middle aged woman,who,through many years’struggle,decides to kill herself at nine o’clock in an ordinary night in her mother’s house.Je...Night,Mother is a famous play about female identification.It is about Jessie,a middle aged woman,who,through many years’struggle,decides to kill herself at nine o’clock in an ordinary night in her mother’s house.Jessie’s fighting for female identity and corresponding power would be analyzed.In the play,Jessie tries two ways to get her power,one by trying to imitating men to get accepted by patriarchal society,and the other by revolting outside resistance and insisting her pursuit of self rights and freedom.展开更多
基金supported by the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0915)the National Natural Science Foundation of China (Grant No. 61106106)the Fundamental Research Funds for the Central Universities, China (Grant No. K5051225013)
文摘A novel source-connected field plate structure, featuring the same photolithography mask as the gate electrode, is proposed as an improvement over the conventional field plate (FP) techniques to enhance the frequency performance in GaN-based HEMTs. The influences of the field plate on frequency and breakdown performance are investigated simul- taneously by using a two-dimensional physics-based simulation. Compared with the conventional T-gate structures with a field plate length of 1.2 gm, this field plate structure can induce the small signal power gain at 10 GHz to increase by 5-9.5 dB, which depends on the distance between source FP and dramatically shortened gate FE This technique minimizes the parasitic capacitances, especially the gate-to-drain capacitance, showing a substantial potential for millimeter-wave, high power applications.
文摘Antenna array gain is a relative measure of performance defined differently in various literature. Most definitions of gain are not power consistent, and thus cannot be used directly in link budget analysis. In this short paper, we present a power correction factor for common definitions of power gain of antenna arrays that allows them to be used in standard link budget calculations.
文摘This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.
文摘High power vertical cavity surface emitting lasers(VCSEKLs) with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structures, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration were used to improve the beam quality and the heat dissipation. A maximum output power of 1.4 W was demonstrated at CW operation for a 400 μm-diameter device. The lasing wavelength shifted to 995.5 nm with a FWHM of 2 nm at a current of 4.8 A due to the internal heating and the absence of active water cooling. A ring-shape far field pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8 A.
文摘This paper presents an adaptive gain-scheduled backstepping control(AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection(PLI) robotic system with two degrees of freedom and a single control input.First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points,an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control(GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.
文摘In conjunction with general integral control, and synthesizing Singular perturbation and Equal ratio gain techniques, this paper proposes a new control design technique, named Power ratio gain technique, and then by Lyapunov method, theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. The highlight point is that it not only inherits all the essences of Singular perturbation and Equal ratio gain techniques but also makes up for their shortcomings, and then the conservatism of control input can be improved by compromising the Power ratio coefficients. Theoretical analysis, design example and simulation results show that Power ratio gain technique is a simple, practical and powerful tool to deal with the uncertain nonlinear system.
文摘Night,Mother is a famous play about female identification.It is about Jessie,a middle aged woman,who,through many years’struggle,decides to kill herself at nine o’clock in an ordinary night in her mother’s house.Jessie’s fighting for female identity and corresponding power would be analyzed.In the play,Jessie tries two ways to get her power,one by trying to imitating men to get accepted by patriarchal society,and the other by revolting outside resistance and insisting her pursuit of self rights and freedom.