期刊文献+
共找到422篇文章
< 1 2 22 >
每页显示 20 50 100
Rockburst Intensity Grade Prediction Model Based on Batch Gradient Descent and Multi-Scale Residual Deep Neural Network
1
作者 Yu Zhang Mingkui Zhang +1 位作者 Jitao Li Guangshu Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1987-2006,共20页
Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices ... Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade. 展开更多
关键词 Rockburst prediction rockburst intensity grade deep neural network batch gradient descent multi-scale residual
下载PDF
Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm 被引量:6
2
作者 F. Nakhaei M.R. Mosavi A. Sam 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期69-77,共9页
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce... Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error. 展开更多
关键词 Artificial neural network Genetic algorithm Flotation column grade Recovery prediction
下载PDF
MOOC Learner’s Final Grade Prediction Based on an Improved Random Forests Method 被引量:1
3
作者 Yuqing Yang Peng Fu +2 位作者 Xiaojiang Yang Hong Hong Dequn Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第12期2413-2423,共11页
Massive Open Online Course(MOOC)has become a popular way of online learning used across the world by millions of people.Meanwhile,a vast amount of information has been collected from the MOOC learners and institutions... Massive Open Online Course(MOOC)has become a popular way of online learning used across the world by millions of people.Meanwhile,a vast amount of information has been collected from the MOOC learners and institutions.Based on the educational data,a lot of researches have been investigated for the prediction of the MOOC learner’s final grade.However,there are still two problems in this research field.The first problem is how to select the most proper features to improve the prediction accuracy,and the second problem is how to use or modify the data mining algorithms for a better analysis of the MOOC data.In order to solve these two problems,an improved random forests method is proposed in this paper.First,a hybrid indicator is defined to measure the importance of the features,and a rule is further established for the feature selection;then,a Clustering-Synthetic Minority Over-sampling Technique(SMOTE)is embedded into the traditional random forests algorithm to solve the class imbalance problem.In experiment part,we verify the performance of the proposed method by using the Canvas Network Person-Course(CNPC)dataset.Furthermore,four well-known prediction methods have been applied for comparison,where the superiority of our method has been proved. 展开更多
关键词 Random forests grade prediction feature selection class imbalance
下载PDF
Accident and hazard prediction models for highway–rail grade crossings:a state-of-the-practice review for the USA
4
作者 Olumide F.Abioye Maxim A.Dulebenets +4 位作者 Junayed Pasha Masoud Kavoosi Ren Moses John Sobanjo Eren E.Ozguven 《Railway Engineering Science》 2020年第3期251-274,共24页
Highway–rail grade crossings(HRGCs)are one of the most dangerous segments of the transportation network.Every year numerous accidents are recorded at HRGCs between highway users and trains,between highway users and t... Highway–rail grade crossings(HRGCs)are one of the most dangerous segments of the transportation network.Every year numerous accidents are recorded at HRGCs between highway users and trains,between highway users and traffic control devices,and solely between highway users.These accidents cause fatalities,severe injuries,property damage,and release of hazardous materials.Researchers and state Departments of Transportation(DOTs)have addressed safety concerns at HRGCs in the USA by investigating the factors that may cause accidents at HRGCs and developed certain accident and hazard prediction models to forecast the occurrence of accidents and crossing vulnerability.The accident and hazard prediction models are used to identify the most hazardous HRGCs that require safety improvements.This study provides an extensive review of the state-of-the-practice to identify the existing accident and hazard prediction formulae that have been used over the years by different state DOTs.Furthermore,this study analyzes the common factors that have been considered in the existing accident and hazard prediction formulae.The reported performance and implementation challenges of the identified accident and hazard prediction formulae are discussed in this study as well.Based on the review results,the US DOT Accident Prediction Formula was found to be the most commonly used formula due to its accuracy in predicting the number of accidents at HRGCs.However,certain states still prefer customized models due to some practical considerations.Data availability and data accuracy were identified as some of the key model implementation challenges in many states across the country. 展开更多
关键词 Highway–rail grade crossings Accident prediction methods Hazard prediction methods Resource allocation Critical review
下载PDF
A New Accident Prediction Model for Highway-Rail Grade Crossings Using the USDOT Formula Variables
5
作者 Jacob Mathew Rahim F Benekohal 《Journal of Traffic and Transportation Engineering》 2020年第1期1-13,共13页
This paper presents the ZINDOT model,a methodology utilizing a zero-inflated negative binomial model with the variables used in the United States Department of Transportation(USDOT)accident prediction formula,to deter... This paper presents the ZINDOT model,a methodology utilizing a zero-inflated negative binomial model with the variables used in the United States Department of Transportation(USDOT)accident prediction formula,to determine the expected accident count at a highway-rail grade crossing.The model developed contains separate formulas to estimate the crash prediction value depending on the warning device type installed at the crossing:crossings with gates,crossings with flashing lights and no gates,and crossings with crossbucks.The proposed methodology also accounts for the observed accident count at a crossing using the Empirical Bayes method.The ZINDOT model estimates were compared to the USDOT model estimates to rank the crossings based on the expected accident frequency.It is observed that the new model can identify crossings with a greater number of accidents with Gates and Flashing Lights and Crossbucks in both Illinois(data which were used to develop the model)and Texas(data which were used to validate the model).A practitioner already using the USDOT formulae to estimate expected accident count at a crossing could easily use the ZINDOT model as it employs the same variables used in the USDOT formula.This methodology could be used to rank highway-rail grade crossings for resource allocation and safety improvement. 展开更多
关键词 Highway-rail grade crossing accident prediction USDOT formulae zero inflated negative binomial empirical Bayes
下载PDF
A novel method to predict static transmission error for spur gear pair based on accuracy grade 被引量:3
6
作者 LIU Chang SHI Wan-kai +1 位作者 Francesca Maria CURÀ Andrea MURA 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3334-3349,共16页
This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modif... This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modifications(PMs)are considered.For the prediction,a discrete gear model for generating the error tooth profile based on the ISO accuracy grade is presented.Then,the gear model and a tooth deflection model for calculating the tooth compliance on gear meshing are coupled with the transmission error model to make the prediction by checking the interference status between gear and pinion.The prediction method is validated by comparison with the experimental results from the literature,and a set of cases are simulated to study the effects of MEs,AEs,TDs and PMs on the static transmission error.In addition,the time-varying backlash caused by both MEs and AEs,and the contact ratio under load conditions are also investigated.The results show that the novel method can effectively predict the range of the static transmission error under different accuracy grades.The prediction results can provide references for the selection of gear design parameters and the optimization of transmission performance in the design stage of gear systems. 展开更多
关键词 gear transmission error time-varying backlash prediction method accuracy grade
下载PDF
Grading evaluation and prediction of fracture-cavity reservoirs in Cambrian Longwangmiao Formation of Moxi area,Sichuan Basin,SW China
7
作者 WANG Bei LIU Xiangjun SIMA Liqiang 《Petroleum Exploration and Development》 2019年第2期301-313,共13页
By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reser... By using core, thin section, well logging, seismic, well testing and other data, the reservoir grading evaluation parameters were selected, the classification criterion considering multiple factors for carbonate reservoirs in this area were established, and the main factors affecting the development of high quality reservoir were determined. By employing Formation MicroScanner Image(FMI) logging fracture-cavity recognition technology and reservoir seismic waveform classification technology, the spatial distribution of reservoirs of all grades were predicted. On the basis of identifying four types of reservoir space developed in the study area by mercury injection experiment, a classification criterion was established using four reservoir grading evaluation parameters, median throat radius, effective porosity and effective permeability of fracture-cavity development zone, relationship between fracture and dissolution pore development and assemblage, and the reservoirs in the study area were classified into grade I high quality reservoir of fracture and cavity type, grade II average reservoir of fracture and porosity type, grade Ⅲ poor reservoir of intergranular pore type. Based on the three main factors controlling the development of high quality reservoir, structural location, sedimentary facies and epigenesis, the distribution of the 3 grades reservoirs in each well area and formation were predicted using geophysical response and percolation characteristics. Follow-up drilling has confirmed that the classification evaluation standard and prediction methods established are effective. 展开更多
关键词 Sichuan Basin Moxi area CAMBRIAN Longwangmiao Formation carbonate rock FRACTURE-CAVITY RESERVOIR RESERVOIR GRADING EVALUATION RESERVOIR prediction
下载PDF
基于浮选泡沫图像预测精矿品位的研究进展 被引量:1
8
作者 卜显忠 杨怡琳 宛鹤 《金属矿山》 CAS 北大核心 2024年第2期25-38,共14页
随着人工智能技术在矿业生产的广泛应用,利用计算机视觉技术提高精矿品位预测的准确性和效率已成为必然趋势。在综述了传统图像处理算法和深度学习算法在精矿品位预测中的应用与发展历程基础上,并探讨了未来的发展趋势和挑战。传统图像... 随着人工智能技术在矿业生产的广泛应用,利用计算机视觉技术提高精矿品位预测的准确性和效率已成为必然趋势。在综述了传统图像处理算法和深度学习算法在精矿品位预测中的应用与发展历程基础上,并探讨了未来的发展趋势和挑战。传统图像处理技术通过提取泡沫图像的尺寸、颜色、纹理和流速等特征,结合分水岭分割、颜色矩、灰度共生矩阵和局部点特征匹配等算法进行特征提取。这些特征在计算资源有限的场景中具有一定的应用价值,但在应对精矿品位预测任务时精度较低。深度学习技术通过构建合适的模型架构并利用大量数据进行训练,能够提取高层语义特征,具有较高的预测精度,与图形处理单元(GPU)等高效运算设备配合使用,可实现高性能和高效率的统一。介绍了支持向量机(SVM)、极限学习机(ELM)等机器学习算法以及多层感知器(MLP)、全连接层和多尺度特征融合等深度学习算法在特征映射和品位预测中的应用,以及深度学习模型的发展历程。最后综述了工业界视觉检测系统的应用现状,并从数据驱动模型、多模态数据融合、算法实时性和数据集规模等方面分析了该领域所面临的挑战和未来发展趋势。 展开更多
关键词 精矿品位预测 浮选泡沫 图像处理 计算机视觉 深度学习
下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
9
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
下载PDF
复发高级别脑胶质瘤患者伽玛刀放疗预后危险因素及风险预测模型构建
10
作者 秦德华 卜亚静 +2 位作者 时昌立 安全 梁武龙 《河南医学研究》 CAS 2024年第8期1388-1392,共5页
目的分析复发高级别脑胶质瘤患者伽玛刀放疗预后的危险因素,并构建风险预测模型。方法回顾性收集2019年1月至2022年1月于医院接受伽玛刀放疗的85例复发高级别脑胶质瘤患者临床资料,依据随访1 a期间预后情况将资料分为病死组(n=40)与存活... 目的分析复发高级别脑胶质瘤患者伽玛刀放疗预后的危险因素,并构建风险预测模型。方法回顾性收集2019年1月至2022年1月于医院接受伽玛刀放疗的85例复发高级别脑胶质瘤患者临床资料,依据随访1 a期间预后情况将资料分为病死组(n=40)与存活组(n=45)。采用Cox回归分析影响复发高级别脑胶质瘤患者伽玛刀放疗预后的因素,根据回归分析结果构建风险预测模型,利用R软件构建列线图,并绘制受试者工作特征曲线评估风险模型的预测效能。结果病死组年龄、最大肿瘤直径大于存活组,而靶区周边剂量、放疗前Karnofsky功能状态(KPS)评分低于存活组,差异有统计学意义(P<0.05);经Cox回归分析显示,年龄、最大肿瘤直径为复发高级别脑胶质瘤患者伽玛刀放疗后病死的危险因素(HR>1,P<0.05),而靶区周边剂量、放疗前KPS评分为复发高级别脑胶质瘤患者伽玛刀放疗后病死的保护因素(HR<1,P<0.05);绘制列线图构建复发高级别脑胶质瘤患者伽玛刀放疗预后病死风险预测模型,验证模型区分度显示一致性指数(C-index)值=0.876,具有良好的区分度;绘制标准曲线显示,校准曲线与Y-X直线相近,模型准确度良好。结论年龄、靶区周边剂量、最大肿瘤直径、KPS评分为复发高级别脑胶质瘤患者伽玛刀放疗预后的影响因素,基于以上因素构建的风险模型对于复发高级别脑胶质瘤患者伽玛刀放疗预后的预测价值较高,具有良好的临床应用价值。 展开更多
关键词 高级别脑胶质瘤 复发 伽玛刀放疗 预后 影响因素 风险预测模型
下载PDF
定性与定量信息相结合预测金品位的方法研究 被引量:1
11
作者 梁智霖 郭攀 《湿法冶金》 CAS 北大核心 2024年第2期195-200,共6页
将改进云模型和改进RBF神经网络相结合,提出了一种预测矿石中金品位的模型。先利用DS证据理论和云模型将定性信息定量化,再采用量子粒子群算法和RBF神经网络完成矿石中金品位预测。结果表明:该模型的均方根误差为0.0092,最大误差为0.01... 将改进云模型和改进RBF神经网络相结合,提出了一种预测矿石中金品位的模型。先利用DS证据理论和云模型将定性信息定量化,再采用量子粒子群算法和RBF神经网络完成矿石中金品位预测。结果表明:该模型的均方根误差为0.0092,最大误差为0.0161,相关系数为0.9402,可较好保留定性信息特性,金品位预测效果较好。 展开更多
关键词 品位 预测 模型 定性信息 定量信息 云模型 RBF神经网络
下载PDF
刚果(金)如瓦西铜-钴矿床表生成矿过程及其勘探意义
12
作者 陶玻 王涛 +5 位作者 李昶 贾宗明 白发青 薛明 田毓龙 邱正杰 《地质与勘探》 CAS CSCD 北大核心 2024年第3期631-642,共12页
中非成矿带刚果(金)如瓦西(Ruashi)铜-钴矿床经历了表生成矿作用,但其研究薄弱。在野外地质调查、室内矿物学观察和矿山生产勘探的基础上,对如瓦西铜-钴矿床的表生分带组构与次生富集规律进行研究。结果表明,该矿床原生矿体由黄铜矿、... 中非成矿带刚果(金)如瓦西(Ruashi)铜-钴矿床经历了表生成矿作用,但其研究薄弱。在野外地质调查、室内矿物学观察和矿山生产勘探的基础上,对如瓦西铜-钴矿床的表生分带组构与次生富集规律进行研究。结果表明,该矿床原生矿体由黄铜矿、斑铜矿、硫铜钴矿等含铜硫化物矿物组成,矿石品位铜在1%~2%、钴在0.1%~0.3%范围内。矿床在近地表发生表生氧化作用后,上部形成了氧化带,可进一步划分为3个亚带:(1)完全氧化亚带;(2)淋滤亚带;(3)次生氧化物富集亚带。上部完全氧化亚带发育富钴氧化物堆积体“矿帽”(钴品位在1%~3%,部分可达12%),淋滤亚带几乎不含铜、钴金属矿物,次生富集氧化物亚带由孔雀石、硅孔雀石、蓝铜矿、胆矾、水胆矾等氧化物矿物和碳酸盐矿物组成,矿石品位铜在5%~10%、钴在0.8%~1.0%范围内,相对原生矿石富集了3~5倍。下部为次生硫化物富集带,出现蓝铜矿、辉铜矿等次生硫化物矿物,矿石品位铜在3%~5%、钴在0.3%~0.8%范围内,相对原生硫化矿富集了1~3倍。综合分析认为,如瓦西铜-钴矿床表生成矿作用受岩石地层、地质构造和地下水等因素的控制,次生富集作用明显提高了矿石品位和矿床开发价值,形成了氧化物富铜-钴矿、硫化物富铜-钴矿和碳酸盐岩接触带附近的氧化物富铜矿及黑色富钴矿等类型的高-特高品位矿体。经勘探验证,在矿区深边部新揭露高品位矿石资源量256万吨,平均品位铜为3.68%、钴为0.44%,可采储量143万吨,平均品位铜为3.53%、钴为0.32%。该研究可为矿区及区域同类型矿山硫化矿演化成氧化矿的表生富集过程及深边部找矿预测提供科学依据。 展开更多
关键词 表生氧化 次生富集 找矿预测 高品位矿石 如瓦西铜-钴矿床 刚果(金)
下载PDF
基于CT影像组学特征预测低分化胆囊癌的价值
13
作者 霍文礼 寇雪纯 +2 位作者 杨敏 梁挺 刘军 《解剖学杂志》 CAS 2024年第1期11-14,51,共5页
目的:探讨多相CT影像组学特征在预测低分化胆囊癌中的价值。方法:回顾性分析本院行根治性胆囊切除术后经病理证实的胆囊癌,根据病理结果分为低分化组(占比44.5%)和非低分化组(占比55.5%)。应用3D Slicer软件手动勾画感兴趣区(ROI),分别... 目的:探讨多相CT影像组学特征在预测低分化胆囊癌中的价值。方法:回顾性分析本院行根治性胆囊切除术后经病理证实的胆囊癌,根据病理结果分为低分化组(占比44.5%)和非低分化组(占比55.5%)。应用3D Slicer软件手动勾画感兴趣区(ROI),分别提取动脉期及静脉期影像组学特征。使用互信息法筛选影像组学特征,将训练集三步降维法筛选的双期影像组学特征拟合至K-邻近算法构建胆囊癌低分化预测模型,测试集用于模型预测效能评价。绘制受试者工作特征(ROC)曲线,通过比较曲线下面积(AUC),确定影像组学特征对低分化胆囊癌的预测效能。结果:筛选出双期特征各1502个,应用三步降维法提取6个特征,即大面积强调、大区域高灰度强调、熵、均值、均方根、第10百分位。预测模型结果显示,训练集AUC为0.83(灵敏度0.76,特异度0.71),测试集AUC为0.68(灵敏度0.67,特异度0.60)。结论:双相CT影像组学特征对低分化胆囊癌的分级具有较好的预测价值,并具有可重复性。 展开更多
关键词 胆囊癌 影像组学 CT 预测模型 病理分级
下载PDF
基于大场景视频监控的坝面施工机械潜在碰撞风险预警方法
14
作者 曾拓程 王佳俊 +2 位作者 钟登华 张雨诺 康栋 《水利学报》 EI CSCD 北大核心 2024年第7期780-790,801,共12页
基于大场景视频监控实现坝面施工机械潜在碰撞风险预警对保证大坝施工安全具有重要意义。然而,目前坝面施工机械潜在碰撞风险检测主要依赖人工经验判断,易出现漏判和误判等问题。因此,本研究提出一种基于大场景视频监控的坝面施工机械... 基于大场景视频监控实现坝面施工机械潜在碰撞风险预警对保证大坝施工安全具有重要意义。然而,目前坝面施工机械潜在碰撞风险检测主要依赖人工经验判断,易出现漏判和误判等问题。因此,本研究提出一种基于大场景视频监控的坝面施工机械潜在碰撞风险预警方法。首先,基于Trajectron++轨迹预测算法,通过迁移学习,实现对坝面大场景视频监控中数量众多、类型多样的施工机械在未来一段时间内的轨迹预测。其次,提出将行驶接近时间和机械最大拥挤度作为坝面施工机械潜在碰撞风险的量化指标,并基于模糊规则,建立不同行驶速度条件下两个指标与潜在碰撞风险分级预警的模糊隶属度函数。最后,采用证据理论对两个指标的预警结果进行融合,计算最终的预警等级。以两河口大坝施工现场的大场景视频监控为例进行实验验证,结果表明坝面施工机械未来6 s的轨迹预测平均位移误差和最终位移误差分别为1.17和2.36 m,且基于模糊-证据融合的施工机械潜在碰撞风险分级预警结果可为坝面施工安全提供自动化、智能化分析方法。 展开更多
关键词 施工机械安全 大场景视频监控 轨迹预测 模糊-证据融合 分级预警
下载PDF
大粒径级配碎石在旋转轴压下永久变形规律
15
作者 江羽习 张瑞富 +3 位作者 梁松林 杨涛 余丽平 谭波 《桂林理工大学学报》 CAS 北大核心 2024年第2期260-267,共8页
为研究大粒径级配碎石在重复荷载作用下的永久变形规律,在道路材料旋转振动压实仪的基础上提出大粒径级配碎石混合料振动旋转压实室内研究制样方式,并采用旋转轴压重复荷载施加方式对成型试样施加重复荷载,最后引入AASHTO和Monismith模... 为研究大粒径级配碎石在重复荷载作用下的永久变形规律,在道路材料旋转振动压实仪的基础上提出大粒径级配碎石混合料振动旋转压实室内研究制样方式,并采用旋转轴压重复荷载施加方式对成型试样施加重复荷载,最后引入AASHTO和Monismith模型对变形数据进行拟合。结果表明:当重复旋转轴压荷载等级低于200 kPa时,试样变形最终将趋于稳定,当荷载等级在240~320 kPa时,变形将缓慢累积且增速渐趋变缓,当荷载等级≥360 kPa时,变形将快速累积且增速保持在较高水平;AASHTO模型对低等级重复荷载作用下的累积变形拟合效果更好,Monismith模型对高等级重复荷载作用下的累积变形拟合效果更佳;旋转轴压荷载值、试样含水率和模型拟合参数的变化具有一定的关联。 展开更多
关键词 道路与铁道工程 大粒径级配碎石 旋转轴压 永久变形 预测模型
下载PDF
基于Wasserstein GAN数据增强的矿物浮选纯度预测
16
作者 吴浩生 江沛 +1 位作者 王作学 杨博栋 《重庆大学学报》 CAS CSCD 北大核心 2024年第9期81-90,共10页
在选矿行业中,准确地预测精矿品位可以帮助工程师提前调整工艺参数,提高浮选性能。但在实际选矿过程中,采集数据存在样本量少、维度高、时序相关性复杂等问题,限制了精矿品位的预测精度。针对小样本数据的预测问题,提出了一种将Wasserst... 在选矿行业中,准确地预测精矿品位可以帮助工程师提前调整工艺参数,提高浮选性能。但在实际选矿过程中,采集数据存在样本量少、维度高、时序相关性复杂等问题,限制了精矿品位的预测精度。针对小样本数据的预测问题,提出了一种将Wasserstein生成对抗网络(Wasserstein generative adversarial network,Wasserstein GAN)和长短期记忆网络(long short-term memory,LSTM)相结合的时间序列数据生成模型LS-WGAN,主要利用LSTM网络来获取选矿数据中的时间相关性,再通过Wasserstein GAN网络生成与原始数据分布相似的样本进行数据增强;为了更加准确地预测精矿品位,建立了浮选预测模型C-LSTM,并基于真实泡沫浮选工艺数据实验验证了所提出方法的预测准确性。 展开更多
关键词 精矿品位预测 Wasserstein生成对抗网络 LSTM 数据增强 深度学习
下载PDF
基于MRI流入血管空间灌注成像直方图特征预测高级别脑胶质瘤复发的研究
17
作者 陈超凡 陈斌 +4 位作者 杨胜娇 肖静 邱若薇 许乙凯 吴元魁 《中国实用神经疾病杂志》 2024年第6期668-673,共6页
目的探究基于MRI的流入血管空间灌注成像(iVASO)技术,计算获取小动脉脑血容量(CBVa)直方图相关特征,分析其预测高级别脑胶质瘤术后复发的价值。方法回顾性收集2020-01—2021-02南方医科大学南方医院收治的50例高级别脑胶质瘤患者的MRI图... 目的探究基于MRI的流入血管空间灌注成像(iVASO)技术,计算获取小动脉脑血容量(CBVa)直方图相关特征,分析其预测高级别脑胶质瘤术后复发的价值。方法回顾性收集2020-01—2021-02南方医科大学南方医院收治的50例高级别脑胶质瘤患者的MRI图像,提取iVASO数据,根据术后复发情况分为非复发组(n=27)、复发组(n=23)。使用Matlab软件处理iVASO数据后计算获得CBVa的直方图参数,包括平均值(CBVa mean)、中位值(CBVa median)、众数(CBVa majority)、最大值(CBVa max)、最小值(CBVa min)、偏度(skewness)、峰度(kurtosis),第10(CBVa 10)、20(CBVa 20)、25(CBVa 25)、30(CBVa 30)、40(CBVa 40)、60(CBVa 60)、70(CBVa 70)、75(CBVa 75)、80(CBVa 80)及90(CBVa 90)百分位数。比较2组各参数,构建预测回归方程式,并绘制ROC曲线评估其预测效能。结果非复发组CBVa mean、CBVa median、CBVa max、CBVa 20、CBVa 25、CBVa 30、CBVa 40、CBVa 60、CBVa 70、CBVa 75、CBVa 80、CBVa 90均显著低于复发组(P<0.05),2组间CBVa min、CBVa majority、skewness、kurtosis及CBVa 10均无统计学差异(P>0.05)。ROC曲线分析显示CBVa median在鉴别非复发组与复发组中的诊断效能最高,曲线下面积均为0.853,当以1.0435×10^(-3) mL/100 mL截断值时,灵敏度为55.6%,特异度为100.0%。基于二分类Logistic回归分析,使用CBVa median构建回归方程式。结论iVASO技术通过获取CBVa直方图特征,可作为一个高级别脑胶质瘤术后复发的预测工具,CBVa median对高级别脑胶质瘤术后复发具有较高的预测价值。 展开更多
关键词 高级别脑胶质瘤 磁共振成像 流入血管空间灌注成像(iVASO) 小动脉血容量(CBVa) 直方图 预测模型
下载PDF
脑电图不同分级标准对于抗N-甲基-D-天门冬氨酸受体脑炎预后的判断价值研究
18
作者 李娜 范田华 +1 位作者 张森 马联胜 《安徽医药》 CAS 2024年第9期1751-1755,I0002,共6页
目的探究脑电图分级标准在抗N-甲基-D-天门冬氨酸受体(NMDAR)脑炎预后判断中的应用价值。方法回顾性分析2014年1月至2022年9月在山西医科大学第一医院诊断为抗NMDAR脑炎病人50例。根据ECBER、Synek、Young和Lavizzari脑电图分级标准,对... 目的探究脑电图分级标准在抗N-甲基-D-天门冬氨酸受体(NMDAR)脑炎预后判断中的应用价值。方法回顾性分析2014年1月至2022年9月在山西医科大学第一医院诊断为抗NMDAR脑炎病人50例。根据ECBER、Synek、Young和Lavizzari脑电图分级标准,对病人入院后的首次脑电图进行分级。在病人出院时依据改良Rankin量表(mRS)评分评价预后,mRS评分0~2分为预后良好。比较4种不同脑电图分级标准与预后之间的相关性,选择预后预测效能最高的脑电图分级标准,研究其与病情严重程度、辅助检查及检验结果的相关性。结果ECBER、Synek、Lavizzari这3种脑电图分级标准与病人预后均有明显相关性(P<0.05),脑电图级别越高,预后越差。经预测效能分析,Lavizzari标准的预后预测效能最高[曲线下面积(AUC)值达到0.86,灵敏度为83.33%,特异度为76.32%,P<0.001]。Lavizzari标准的中重度异常脑电图组,在住院时间、监护室住院时间、临床症状数量、并发症数量和病情严重例数及占比分别为[42.00(29.00,53.00)d、16.00(0.00,42.00)d、5.00(4.50,5.50)个、3.00(1.00,3.50)个、13例(68.42%)],轻度异常脑电图组分别为[18.00(12.50,26.00)d、0.00(0.00,1.00)d、3.00(3.00,4.00)个、0.00(0.00,1.50)个、9例(29.03%)],差异有统计学意义(P<0.05),在脑脊液抗体滴度、头颅核磁异常等指标差异无统计学意义(P>0.05)。结论抗NMDAR脑炎病人脑电图异常比例较高。Lavizzari脑电图分级标准对抗NMDAR脑炎病人早期病情评估及预后有较好预测价值,其异常程度与脑脊液抗体滴度、头颅MRI及疾病复发无关。 展开更多
关键词 脑炎 抗N-甲基-D-天门冬氨酸受体脑炎 脑电图 分级标准 预测预后 病情评估
下载PDF
能谱CT联合血清G-17、CEA在术前预测胃癌病理分级中的价值研究
19
作者 李琰 郭洋洋 +2 位作者 赵森 杜森 周青 《齐齐哈尔医学院学报》 2024年第16期1564-1567,共4页
目的探究能谱CT联合血清G-17、CEA在术前预测胃癌病理分级中的应用价值。方法选择2021年7月—2023年3月本院收治的75例胃癌患者的临床资料进行回顾性分析。根据肿瘤细胞分化程度将患者分为低分化组(38例)和中高分化组(37例)两组。分析... 目的探究能谱CT联合血清G-17、CEA在术前预测胃癌病理分级中的应用价值。方法选择2021年7月—2023年3月本院收治的75例胃癌患者的临床资料进行回顾性分析。根据肿瘤细胞分化程度将患者分为低分化组(38例)和中高分化组(37例)两组。分析所有患者术前能谱CT检查结果和血清G-17、CEA表达水平。结果低分化组胃癌患者静脉期的碘基值、能谱曲线斜率、有效原子序列明显高于中高分化组(P<0.05)。低分化组胃癌患者血清G-17、CEA水平明显高于中高分化组胃癌患者(P<0.05)。胃癌患者静脉期的碘基值、能谱曲线斜率、有效原子序列及血清G-17、CEA各项指标指标间均具有相关性,(P<0.05)。胃癌患者静脉期的碘基值、能谱曲线斜率、有效原子序列及血清G-17、CEA在预测胃癌患者病理分级的ROC曲线下面积分别为0.815、0.778、0.702、0.749、0.747,差异均有统计学意义(P<0.05)。联合检测ROC曲线下面积为0.962(P<0.05)。联合检测的AUC明显高于静脉期的碘基值、能谱曲线斜率、有效原子序列及血清G-17、CEA各指标单独检测(P<0.05)。结论术前通过评估胃癌患者能谱CT碘浓度变化,并结合血清G-17、CEA表达,对预测胃癌病理分级有参考价值。 展开更多
关键词 能谱CT 血清G-17 血清CEA 术前预测 胃癌病理分级
下载PDF
镍浮选过程智能控制系统开发与应用 被引量:1
20
作者 张海洋 王旭 +3 位作者 王庆凯 邹国斌 杨佳伟 刘道喜 《有色金属工程》 CAS 北大核心 2024年第2期77-84,共8页
针对国内某选矿厂镍浮选工艺来矿性质不稳定、精矿品位波动大、回收率不理想的特点,结合浮选生产现场检测设备不完备或者检测周期长、费用高的现状,设计了一套基于品位预测模型的浮选过程智能控制系统,系统投入运行后,泡沫流速稳定性显... 针对国内某选矿厂镍浮选工艺来矿性质不稳定、精矿品位波动大、回收率不理想的特点,结合浮选生产现场检测设备不完备或者检测周期长、费用高的现状,设计了一套基于品位预测模型的浮选过程智能控制系统,系统投入运行后,泡沫流速稳定性显著提高,精矿品位波动性明显减小,证明了系统的实用性。 展开更多
关键词 浮选工艺 泡沫流速 精矿品位 检测设备 预测模型 智能控制
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部