In this paper,we derive the strong approximations for a four-class two station multi-class queuing network(Kumar-Seidman network) under a priority service discipline.Within a group,jobs are served in the order of ar...In this paper,we derive the strong approximations for a four-class two station multi-class queuing network(Kumar-Seidman network) under a priority service discipline.Within a group,jobs are served in the order of arrival,that is,a first-in-first-out disciple,and among groups,jobs are served under a pre-emptiveresume priority disciple.We show that if the input data(i.e.,the arrival and service processe) satisfy an approximation(such as the functional law-of-iterated logarithm approximation or the strong approximation),the output data(the departure processes) and the performance measures(such as the queue length,the work load and the sojourn time process) satisfy a similar approximation.展开更多
文摘In this paper,we derive the strong approximations for a four-class two station multi-class queuing network(Kumar-Seidman network) under a priority service discipline.Within a group,jobs are served in the order of arrival,that is,a first-in-first-out disciple,and among groups,jobs are served under a pre-emptiveresume priority disciple.We show that if the input data(i.e.,the arrival and service processe) satisfy an approximation(such as the functional law-of-iterated logarithm approximation or the strong approximation),the output data(the departure processes) and the performance measures(such as the queue length,the work load and the sojourn time process) satisfy a similar approximation.