A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothe...A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.展开更多
Initial firing temperatures play an important role on the combustion rate of propellant. In gun propellants, initial temperature is a key factor for both accuracy and safety. Ideally, the initial temperature of the pr...Initial firing temperatures play an important role on the combustion rate of propellant. In gun propellants, initial temperature is a key factor for both accuracy and safety. Ideally, the initial temperature of the propellant should not influence the ballistic properties of the round. Nevertheless, constant initial temperature coefficients can not be achieved easily. This work focuses on the influence of the firing temperature on the ballistic properties, the mechanical integrity and the sensitivity to impact of nitrocellulose based propellants. Combustion rates have been determined by closed vessel tests. Ballistic properties have been investigated by firing 5.56 cartridges. The propellants have been conditioned at temperatures ranging from -54 ℃ to +71 ℃ before firing. The largest temperature coefficient is observed at high temperatures. The temperature sensitivity of the peak pressure in the combustion chamber can not be fully explained by the results from the closed vessel test. The authors speculated that the mechanical behaviour of the propellant grains at low temperatures influences also the overall ballistic properties of the round. Impact tests with propellants conditioned at low and high temperatures permit to investigate their mechanical strength under extreme temperatures and to better understand the propellant performance during firing. Tests on aged propellants have been conducted as well.展开更多
In order to study the variation of temperature to mechanical stimulation threshold of typical liquid propellants(ADN-based HAN-based and nitromethane),the critical impact energy and critical friction of three propella...In order to study the variation of temperature to mechanical stimulation threshold of typical liquid propellants(ADN-based HAN-based and nitromethane),the critical impact energy and critical friction of three propellants under different temperatures were studied by using BAM fall hammer impact sensitivity tester and BAM friction sensitivity tester.Experiments show that under 80℃,60℃,40℃and 20℃,the critical impact energy of HAN-based are 20 J,15 J,15 J,15 J;the critical impact energy of nitromethane are 2 J,2 J,2 J,2 J;and the critical impact energy of ADN-based are<1 J,3 J,7.5 J,15 J.It reveals that HAN-based propellant has the highest critical impact energy,while nitromethane propellant has the lowest critical impact energy.ADN-based propellant has a notable decrease on its critical impact energy with temperature decreasing,indicating that temperature has a significant effect on impact sensitivity of ADN-based propellant.The critical friction of three samples are all higher than 360 N at 80℃,60℃,40℃and 20℃,which shows that the samples are not sensitive to friction,and temperature has no significant effect on the critical friction of three samples.The mechanical stimulations that may be encountered during the production and use of liquid propellants are analyzed,which takes certain working conditions and the temperature coupling effect into consideration,thereby providing support for safety management of liquid propellants during production and storage process.展开更多
The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases(CC) were conducted previously.These cartridges were hlled with commercial off-...The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases(CC) were conducted previously.These cartridges were hlled with commercial off-the-shelf(COTS) double based(DB) propellant(Bulls Eye)and were loaded in a hot chamber.The thermal explosion temperature is of great significance to both weapon designers and safety inspectors as it provides the operational limit and safe operating temperature.For CC under test,it was found that the cook-off temperatures of this propellant were encountered with the heat transfer profile of the simulated gun barrel between 151.4 ℃ and 153.4 ℃,with a reaction occurring in less than300 s after the round was chambered.Usefully,each experiment was found to be consistent and repeatable.展开更多
In order to study the relationship between charge size and thermal initiation critical temperature of explosive in defined conditions,cook-off test about JH explosive was carried out at a heating rate of 1 ℃/min usin...In order to study the relationship between charge size and thermal initiation critical temperature of explosive in defined conditions,cook-off test about JH explosive was carried out at a heating rate of 1 ℃/min using self-designed cook-off experiment setup based on thermostatic control technology.Numerical simulation was conducted to study the effects of different charge sizes on thermal initiation critical temperature of explosives with FLUENT software.Experiment results show that there is a thermal initiation critical temperature in cook-off bomb.Simulation results show that when the ratio of the length to diameter of explosives grains is a fixed value,the thermal initiation critical temperature of explosives decreases with the increase of the diameter of explosives grains.When the grains diameter of explosives increase up to a certain value,the influence of charge size on thermal initiation critical temperature tends to be weakened.Charge size has no influence on the ignition point of explosives.The ignition point is always in the center of the grain.展开更多
The thermal decomposition behavior of composite modified double-base(CMDB) propellant containing cyclotrimethylene trinitramine(RDX) was studied via a Calvet microcalorimeter at five different heating rates. The a...The thermal decomposition behavior of composite modified double-base(CMDB) propellant containing cyclotrimethylene trinitramine(RDX) was studied via a Calvet microcalorimeter at five different heating rates. The activation energy(E) and the pre-exponential factor(A) of two obvious exothermic processes were obtained by Kissinger's method and Ozawa's method. The entropy of activation(△S^≠), the enthalpy of activation(△H^≠), and the free energy of activation(△G^≠) of the first stage were calculated. To evaluate the thermal hazard of the RDX-CMDB propellant, the critical temperature of thermal explosion(Tb), the self acceleration decomposition temperature(Tsgox), the adiabatic decomposition temperature increment(ATad) and the time-to-explosion of adiabatic system(t) were presented as 145.3 ℃, 138.15 ℃, 1634 K and 583.71 s(n=0) and 586.28 s(n=1), respectively.展开更多
The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle(...The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle(SE-CSP) is introduced in virial equation. Based on a corresponding state equation, including three characteristic parameters, an extended parameter is introduced to describe the second virial coefficient expressions of main products of propellant gas. The modified SE-CSP second virial coefficient expression was extrapolated based on the virial coefficients experimental temperature, and the second virial coefficients obtained are in good agreement with the experimental data at a low temperature and the theoretical values at high temperature. The maximum pressure in the closed bomb test was calculated with modified SE-CSP virial coefficient expressions with the calculated error of less than 2%, and the error was smaller than the result calculated with the reported values under the same calculation conditions. The modified SE-CSP virial coefficient expression provides a convenient and efficient method for practical virial coefficient calculation without resorting to complicated molecular model design and integral calculation.展开更多
基金We are grateful to the National Natural Science Foundation of China (No. 20573098)
文摘A method of estimating the safe storage life (τ), self-accelerating decomposition temperature (TsADT) and critical temperature of thermal explosion (Tb) of double-base propellant using isothermal and non-isothermal decomposition behaviours is presented. For double-base propellant composed of 56±1wt% of nitrocellulose (NC), 27±0.5wt% of nitroglycerine (NG), 8.15±0.15wt% of dinitrotoluene (DNT), 2.5±0.1wt% of methyl centralite, 5.0±0.15wt% of catalyst and 1.0±0.1wt% of other, the values of r of 49.4 years at 40℃, of TSAOT of 151.35℃ and of Tb of 163.01℃ were obtained.
文摘Initial firing temperatures play an important role on the combustion rate of propellant. In gun propellants, initial temperature is a key factor for both accuracy and safety. Ideally, the initial temperature of the propellant should not influence the ballistic properties of the round. Nevertheless, constant initial temperature coefficients can not be achieved easily. This work focuses on the influence of the firing temperature on the ballistic properties, the mechanical integrity and the sensitivity to impact of nitrocellulose based propellants. Combustion rates have been determined by closed vessel tests. Ballistic properties have been investigated by firing 5.56 cartridges. The propellants have been conditioned at temperatures ranging from -54 ℃ to +71 ℃ before firing. The largest temperature coefficient is observed at high temperatures. The temperature sensitivity of the peak pressure in the combustion chamber can not be fully explained by the results from the closed vessel test. The authors speculated that the mechanical behaviour of the propellant grains at low temperatures influences also the overall ballistic properties of the round. Impact tests with propellants conditioned at low and high temperatures permit to investigate their mechanical strength under extreme temperatures and to better understand the propellant performance during firing. Tests on aged propellants have been conducted as well.
文摘In order to study the variation of temperature to mechanical stimulation threshold of typical liquid propellants(ADN-based HAN-based and nitromethane),the critical impact energy and critical friction of three propellants under different temperatures were studied by using BAM fall hammer impact sensitivity tester and BAM friction sensitivity tester.Experiments show that under 80℃,60℃,40℃and 20℃,the critical impact energy of HAN-based are 20 J,15 J,15 J,15 J;the critical impact energy of nitromethane are 2 J,2 J,2 J,2 J;and the critical impact energy of ADN-based are<1 J,3 J,7.5 J,15 J.It reveals that HAN-based propellant has the highest critical impact energy,while nitromethane propellant has the lowest critical impact energy.ADN-based propellant has a notable decrease on its critical impact energy with temperature decreasing,indicating that temperature has a significant effect on impact sensitivity of ADN-based propellant.The critical friction of three samples are all higher than 360 N at 80℃,60℃,40℃and 20℃,which shows that the samples are not sensitive to friction,and temperature has no significant effect on the critical friction of three samples.The mechanical stimulations that may be encountered during the production and use of liquid propellants are analyzed,which takes certain working conditions and the temperature coupling effect into consideration,thereby providing support for safety management of liquid propellants during production and storage process.
文摘The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases(CC) were conducted previously.These cartridges were hlled with commercial off-the-shelf(COTS) double based(DB) propellant(Bulls Eye)and were loaded in a hot chamber.The thermal explosion temperature is of great significance to both weapon designers and safety inspectors as it provides the operational limit and safe operating temperature.For CC under test,it was found that the cook-off temperatures of this propellant were encountered with the heat transfer profile of the simulated gun barrel between 151.4 ℃ and 153.4 ℃,with a reaction occurring in less than300 s after the round was chambered.Usefully,each experiment was found to be consistent and repeatable.
文摘In order to study the relationship between charge size and thermal initiation critical temperature of explosive in defined conditions,cook-off test about JH explosive was carried out at a heating rate of 1 ℃/min using self-designed cook-off experiment setup based on thermostatic control technology.Numerical simulation was conducted to study the effects of different charge sizes on thermal initiation critical temperature of explosives with FLUENT software.Experiment results show that there is a thermal initiation critical temperature in cook-off bomb.Simulation results show that when the ratio of the length to diameter of explosives grains is a fixed value,the thermal initiation critical temperature of explosives decreases with the increase of the diameter of explosives grains.When the grains diameter of explosives increase up to a certain value,the influence of charge size on thermal initiation critical temperature tends to be weakened.Charge size has no influence on the ignition point of explosives.The ignition point is always in the center of the grain.
基金Supported by the National Natural Science Foundation of China(No.20573098)the Science and Technology Foundation of the National Defense Key Laboratory of Propellant and Explosive Combustion in China(No.9140C3501020901)
文摘The thermal decomposition behavior of composite modified double-base(CMDB) propellant containing cyclotrimethylene trinitramine(RDX) was studied via a Calvet microcalorimeter at five different heating rates. The activation energy(E) and the pre-exponential factor(A) of two obvious exothermic processes were obtained by Kissinger's method and Ozawa's method. The entropy of activation(△S^≠), the enthalpy of activation(△H^≠), and the free energy of activation(△G^≠) of the first stage were calculated. To evaluate the thermal hazard of the RDX-CMDB propellant, the critical temperature of thermal explosion(Tb), the self acceleration decomposition temperature(Tsgox), the adiabatic decomposition temperature increment(ATad) and the time-to-explosion of adiabatic system(t) were presented as 145.3 ℃, 138.15 ℃, 1634 K and 583.71 s(n=0) and 586.28 s(n=1), respectively.
文摘The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle(SE-CSP) is introduced in virial equation. Based on a corresponding state equation, including three characteristic parameters, an extended parameter is introduced to describe the second virial coefficient expressions of main products of propellant gas. The modified SE-CSP second virial coefficient expression was extrapolated based on the virial coefficients experimental temperature, and the second virial coefficients obtained are in good agreement with the experimental data at a low temperature and the theoretical values at high temperature. The maximum pressure in the closed bomb test was calculated with modified SE-CSP virial coefficient expressions with the calculated error of less than 2%, and the error was smaller than the result calculated with the reported values under the same calculation conditions. The modified SE-CSP virial coefficient expression provides a convenient and efficient method for practical virial coefficient calculation without resorting to complicated molecular model design and integral calculation.