期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Alleviation of acute pancreatitis-associated lung injury by inhibiting the p38 mitogen-activated protein kinase pathway in pulmonary microvascular endothelial cells 被引量:4
1
作者 Xiao-Xin Zhang Hao-Yang Wang +8 位作者 Xue-Fei Yang Zi-Qi Lin Na Shi Chan-Juan Chen Lin-Bo Yao Xin-Min Yang Jia Guo Qing Xia Ping Xue 《World Journal of Gastroenterology》 SCIE CAS 2021年第18期2141-2159,共19页
BACKGROUND Previous reports have suggested that the p38 mitogen-activated protein kinase signaling pathway is involved in the development of severe acute pancreatitis(SAP)-related acute lung injury(ALI).Inhibition of ... BACKGROUND Previous reports have suggested that the p38 mitogen-activated protein kinase signaling pathway is involved in the development of severe acute pancreatitis(SAP)-related acute lung injury(ALI).Inhibition of p38 by SB203580 blocked the inflammatory responses in SAP-ALI.However,the precise mechanism associated with p38 is unclear,particularly in pulmonary microvascular endothelial cell(PMVEC)injury.AIM To determine its role in the tumor necrosis factor-alpha(TNF-α)-induced inflammation and apoptosis of PMVECs in vitro.We then conducted in vivo experiments to confirm the effect of SB203580-mediated p38 inhibition on SAP-ALI.METHODS In vitro,PMVEC were transfected with mitogen-activated protein kinase kinase 6(Glu),which constitutively activates p38,and then stimulated with TNF-α.Flow cytometry and western blotting were performed to detect the cell apoptosis and inflammatory cytokine levels,respectively.In vivo,SAP-ALI was induced by 5%sodium taurocholate and three different doses of SB203580(2.5,5.0 or 10.0 mg/kg)were intraperitoneally injected prior to SAP induction.SAP-ALI was assessed by performing pulmonary histopathology assays,measuring myeloperoxidase activity,conducting arterial blood gas analyses and measuring TNF-α,interleukin(IL)-1βand IL-6 levels.Lung microvascular permeability was measured by determining bronchoalveolar lavage fluid protein concentration,Evans blue pulmonary cells was confirmed by performing a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analysis and examining the Bcl2,Bax,Bim and cle-caspase3 levels.The proteins levels of P-p38,NFκB,IκB,P-signal transducer and activator of transcription-3,nuclear factor erythroid 2-related factor 2,HO-1 and Myd88 were detected in the lungs to further evaluate the potential mechanism underlying the protective effect of SB203580.RESULTS In vitro,mitogen-activated protein kinase(Glu)transfection resulted in higher apoptotic rates and cytokine(IL-1βand IL-6)levels in TNF-α-treated PMVECs.In vivo,SB2035080 attenuated lung histopathological injury,decreased inflammatory activity(TNF-α,IL-1β,IL-6 and myeloperoxidase)and preserved pulmonary function.Furthermore,SB203580 significantly reversed changes in the bronchoalveolar lavage fluid protein concentration,Evans blue accumulation,terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cell numbers,apoptosis-related proteins(cle-caspase3,Bim and Bax)and endothelial microstructure.Moreover,SB203580 significantly reduced the pulmonary P-p38,NFκB,P-signal transducer and activator of transcription-3 and Myd88 levels but increased the IκB and HO-1 levels.CONCLUSION p38 inhibition may protect against SAP-ALI by alleviating inflammation and the apoptotic death of PMVECs. 展开更多
关键词 Acute pancreatitis Acute lung injury pulmonary microvascular endothelial cells P38 SB203580 Apoptosis
下载PDF
Xijiao Dihuang Decoction combined with Yinqiao Powder reverses influenza virus-induced F-actin reorganization in PMVECs by inhibiting ERM phosphorylation
2
作者 Zinan Xuan Ying Wu +7 位作者 Chenyue Zhang Shujing Zhang Xiangyang Chen Shuyu Li Yu Hao Qian Wang Xudan Wang Shu Zhang 《Journal of Traditional Chinese Medical Sciences》 2016年第1期50-58,共9页
Objective:It has been documented that ezrin/radixin/moesin(ERM)phosphorylation by the p38 mitogen-activated protein kinase(MAPK),Rho/ROCK,and protein kinase C(PKC)pathways leads to filamentous actin(F-actin)reorganiza... Objective:It has been documented that ezrin/radixin/moesin(ERM)phosphorylation by the p38 mitogen-activated protein kinase(MAPK),Rho/ROCK,and protein kinase C(PKC)pathways leads to filamentous actin(F-actin)reorganization and microvascular endothelial cell hyperpermeability.In this study,we investigated the effects of Xijiao Dihuang Decoction combined with Yinqiao Powder(XDY)on influenza virus(IV)-induced F-actin restructuring and ERM phosphorylation regulated by the Rho/Rho kinase 1(ROCK),p38 MAPK,and PKC signaling pathways in pulmonary microvascular endothelial cells(PMVECs).Methods:Serum containing XDY(XDY-CS;13.8 g/kg)was acquired using standard protocols for serum pharmacology.Primary PMVECs were obtained from male Wistar rats and cultured.After adsorption of IV A(multiplicity of infection,0.01)for 1 h,medium with 20%XDY-CS was added to the PMVECs.The distributions of F-actin and phosphorylated ERM were determined by confocal microscopy,and F-actin expression was measured by flow cytometry.The expression levels of ROCK1,phosphorylated myosin phosphatase target-subunit(p-MYPT),phosphorylated MAPK kinase,phosphorylated p38(p-p38),phosphorylated PKC(p-PKC),and phosphorylated ERM(p-ERM)were determined by western blotting.Results:F-actin reorganization in IV-infected PMVECs was reversed by XDY-CS treatment,which was accompanied by reduced p-ERM production.The p-ERM protein accumulated at plasma membrane of PMVECs infected with IV,which was also inhibited by XDY-CS treatment. 展开更多
关键词 Xijiao Dihuang Decoction combined with Yinqiao Powder Influenza virus pulmonary microvascular endothelial cells Filamentous actin Ezrin/radixin/moesin
下载PDF
The Notch pathway attenuates burn-induced acute lung injury in rats by repressing reactive oxygen species 被引量:2
3
作者 Weixia Cai Kuo Shen +7 位作者 Peng Ji Yanhui Jia Shichao Han Wanfu Zhang Xiaolong Hu Xuekang Yang Juntao Han Dahai Hu 《Burns & Trauma》 SCIE 2022年第1期570-585,共16页
Background:Acute lung injury(ALI)is a common complication following severe burns.The underlying mechanisms of ALI are incompletely understood;thus,available treatments are not sufficient to repair the lung tissue afte... Background:Acute lung injury(ALI)is a common complication following severe burns.The underlying mechanisms of ALI are incompletely understood;thus,available treatments are not sufficient to repair the lung tissue after ALI.Methods:To investigate the relationship between the Notch pathway and burn-induced lung injury,we established a rat burn injury model by scalding and verified lung injury via lung injury evaluations,including hematoxylin and eosin(H&E)staining,lung injury scoring,bronchoalveolar lavage fluid and wet/dry ratio analyses,myeloperoxidase immunohistochemical staining and reac-tive oxygen species(ROS)accumulation analysis.To explore whether burn injury affects Notch1 expression,we detected the expression of Notch1 and Hes1 after burn injury.Then,we extracted pulmonary microvascular endothelial cells(PMVECs)and conducted Notch pathway inhibition and activation experiments,via aγ-secretase inhibitor(GSI)and OP9-DLL1 coculture,respectively,to verify the regulatory effect of the Notch pathway on ROS accumulation and apoptosis in burn-serum-stimulated PMVECs.To investigate the regulatory effect of the Notch pathway on ROS accumulation,we detected the expression of oxidative-stress-related molecules such as superoxide dismutase,nicotinamide adenine dinucleotide phosphate(NADPH)oxidase(NOX)2,NOX4 and cleaved caspase-3.NOX4-specific small interfering RNA(siRNA)and the inhibitor GKT137831 were used to verify the regulatory effect of the Notch pathway on ROS via NOX4.Results:We successfully established a burn model and revealed that lung injury,excessive ROS accumulation and an inflammatory response occurred.Notch1 detection showed that the expression of Notch1 was significantly increased after burn injury.In PMVECs challenged with burn serum,ROS and cell death were elevated.Moreover,when the Notch pathway was suppressed by GSI,ROS and cell apoptosis levels were significantly increased.Conversely,these parameters were reduced when the Notch pathway was activated by OP9-DLL1.Mechanistically,the inhibition of NOX4 by siRNA and GKT137831 showed that the Notch pathway reduced ROS production and cell apoptosis by downregulating the expression of NOX4 in PMVECs.Conclusions:The Notch pathway reduced ROS production and apoptosis by downregulating the expression of NOX4 in burn-stimulated PMVECs.The Notch-NOX4 pathway may be a novel therapeutic target to treat burn-induced ALI. 展开更多
关键词 Acute lung injury Notch pathway Reactive oxygen species pulmonary microvascular endothelial cells Nicotinamide adenine dinucleotide phosphate oxidase 4 BURN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部