The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual f...The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.展开更多
Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the pa...Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the past few years in the Putaohua reservoir of the Puao Oilfield in the south of the Daqing placanticline by detailed exploration. Based on a study of micro-geological causes of low-resistivity oil layers, the macro-geological controlling factors were analyzed through comprehensive research of regional depositional background, geological structure, and oil-water relations combined with core, water testing, well logging, and scanning electron microscopy data. The results showed that the formation and distribution of Putaohua low-resistivity oil layers in the Puao Oilfield were controlled by depositional environment, sedimentary facies, diagenesis, motive power of hydrocarbon accumulation, and acidity and alkalinity of reservoir liquid. The low-resistivity oil layers caused by high bound-water saturation were controlled by deposition and diagenesis, those caused by high free-water saturation were controlled by structural amplitude and motive power of hydrocarbon accumulation. Those caused by formation water with high salinity were controlled by the ancient saline water depositional environment and faulted structure and those caused by additional conductivity of shale were controlled by paleoclimate and acidity and alkalinity of reservoir liquid. Consideration of both micro-geological causes and macro-geological controlling factors is important in identifying low-resistivity oil layers.展开更多
基金the National Natural Science Foundation of China (Project No.40372072)
文摘The Putaohua Oilfield is a fault-prolific area and the faults have close relation with structural traps. The genetic models of the structural traps in the Putaohua Oilfield can be divided into two types: individual fault model and multi-fault interaction model. This is based on the description of displacement distribution of typical individual normal faults, the geometry of the footwall and hanging wall, and the analysis of the interaction between faults and the corresponding change in geometry when the faults grow. The individual fault model is that the displacement reaches a maximum at or near the center of fault and decreases toward the fault tips, so a half-graben is formed on the hanging wall of the fault and a half- anticline is formed on the footwall because of the isostatic process. The multi-fault interaction model is that during the growth of faults, they overlap and interact with each other, and accommodation zones are formed in the overlapping segments. The accommodation zones are favorable targets for hydrocarbon exploration, and the trap characteristics are dependent The multi-fault interaction model can be subdivided on the extent of overlap and occurrence of faults. into three types: synthetic accommodation zone, convergent accommodation zone and divergent accommodation zone. Hydrocarbon migration and accumulation models of each type have been developed. The hydrocarbon migration and accumulation models of the traps with different genetic models have their own characteristics in the different stages of fault growth.
基金supported by the National Natural ScienceFoundation Project(No.40173023)
文摘Low-resistivity oil layers are often missed in logging interpretation because of their resistivity close to or below the resistivity of nearby water layers. Typical low-resistivity oil layers have been found in the past few years in the Putaohua reservoir of the Puao Oilfield in the south of the Daqing placanticline by detailed exploration. Based on a study of micro-geological causes of low-resistivity oil layers, the macro-geological controlling factors were analyzed through comprehensive research of regional depositional background, geological structure, and oil-water relations combined with core, water testing, well logging, and scanning electron microscopy data. The results showed that the formation and distribution of Putaohua low-resistivity oil layers in the Puao Oilfield were controlled by depositional environment, sedimentary facies, diagenesis, motive power of hydrocarbon accumulation, and acidity and alkalinity of reservoir liquid. The low-resistivity oil layers caused by high bound-water saturation were controlled by deposition and diagenesis, those caused by high free-water saturation were controlled by structural amplitude and motive power of hydrocarbon accumulation. Those caused by formation water with high salinity were controlled by the ancient saline water depositional environment and faulted structure and those caused by additional conductivity of shale were controlled by paleoclimate and acidity and alkalinity of reservoir liquid. Consideration of both micro-geological causes and macro-geological controlling factors is important in identifying low-resistivity oil layers.