We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film ...We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.展开更多
Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy ...Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.展开更多
A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained u...A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained under a pump power of 235 mW. An unbonded laser output experiment with the same dimension of the active material and the saturable absorber as the bonded laser output experiment is carried out. The reason why the output in the bonded laser is improved is determined.展开更多
We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain mediu...We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain medium are assumed to be of Gaussian spatial distributions. These rate equations are normalized by introducing some synthetic parameters and solved numerically, and a group of general curves are generated. Prom these curves we can understand the dependence of the Raman laser pulse characteristics on the parameters about the pumping, the gain medium, the Raman medium and the resonator. An illustrative calculation for a passively Q-switched Nd^3+:GdVO4 self-Raman laser is presented to demonstrate the usage of the curves and related formulas.展开更多
A compact laser diode-pumped solid-state Nd:LuVO4 acousto-optic Q-switched laser is demonstrated at 916 nm of a quasi-three level for the first time. A pulse width of 130ns is observed when the pulse-repetition frequ...A compact laser diode-pumped solid-state Nd:LuVO4 acousto-optic Q-switched laser is demonstrated at 916 nm of a quasi-three level for the first time. A pulse width of 130ns is observed when the pulse-repetition frequency is 10 kHz. The laser experiment shows that the Nd:Lu VO4 crystal can be used for efficient diode-pumped Q-switched lasers.展开更多
To account for the effect of lower-level relaxation, we have derived a characteristic equation for describing the laser pulse from the modified rate equations for Q-switched lasers. The pulse temporal profile is relat...To account for the effect of lower-level relaxation, we have derived a characteristic equation for describing the laser pulse from the modified rate equations for Q-switched lasers. The pulse temporal profile is related to the ratio of the lower-level lifetime to the cavity lifetime and the number of times the population inversion density is above the threshold. By solving the coupled rate equations numerically, the effect of terminal-level lifetime on pulse temporal behaviour is analysed. The mode is applied to the case of a diode-pumped Nd:YAG laser that is passively Q-switched by a Cr4+ :YAG absorber. Theoretical results show good agreement with the experiments.展开更多
We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pu...We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately,and is compared with Tm:YAG laser.Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other.When the repetition frequency is 100 Hz,the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ,pulse width of 126.7 ns,and the center wavelength of 2013.36 nm,and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ,pulse width of 252.4 ns,and the center wavelength of 2023.65 nm,and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5%and 11.85%,the center wavelengths of 2017.89 nm and 2027.11 nm,respectively,while the pump sources are 785-nm and 788-nm pulsed LDs,respectively.展开更多
A high power continuous wave (CW) laser diode (LD) pumped acousto-optic Q-switched Nd:YVO4 laser is presented. A short pulse at the 1064 nm is obtained. With a repetition rate of 50 kHz,the maximum average output powe...A high power continuous wave (CW) laser diode (LD) pumped acousto-optic Q-switched Nd:YVO4 laser is presented. A short pulse at the 1064 nm is obtained. With a repetition rate of 50 kHz,the maximum average output power of 5.72 W is achieved. The optical conversion efficiency and the slope efficiency are up to 28% and 32.4% respectively. At the repetition rate of 10 kHz and the pulse width of 16.3ns, the maximum single pulse energy of 286 μJ and the peak power of 13kW are acquired. The laser can be used as a signal source in the free-space optical communication. The output signal agrees with the modulate signal well.展开更多
A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a t...We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.展开更多
We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber to...We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber together with a 0.08-nmbandwidth polarization-maintaining fiber Bragg grating(FBG)acts as an ultra-narrow bandwidth filter to realize singlelongitudinal-mode(SLM)oscillation.The devices used in the laser are all kept polarized,so as to ensure linearly polarized laser output.Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved,producing a laser with a shortest pulse width of 1.36μs,a linewidth of 28.4 MHz,a repetition rate of 28.3 kHz-95.9 kHz,and a polarization extinction ratio of about 30 dB.It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection,beam combining,nonlinear frequency conversion,and other fields.展开更多
A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical e...A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.展开更多
A new disordered crystal Nd:SrAl12O19(Nd:SRA)with an Nd3+doping concentration of 5%was successfully grown using the Czochralski method.A diode-pumped Nd:SRA Q-switched laser operating at 1049 nm was demonstrated for t...A new disordered crystal Nd:SrAl12O19(Nd:SRA)with an Nd3+doping concentration of 5%was successfully grown using the Czochralski method.A diode-pumped Nd:SRA Q-switched laser operating at 1049 nm was demonstrated for the first time,to the best of our knowledge.Based on an MXene Ti3C2Tx sheet,a high repetition rate of 201 kHz and a Q-switched pulse width of 346 ns were obtained when the absorbed pump power was 2.8 W.The peak power and single pulse energy were 1.87 W and 0.65μJ,respectively.展开更多
We demonstrated the efficient plasmon-induced nonlinear absorption of liquid metal GaInSn nanospheres prepared by a facile liquid-phase method. With GaInSn as saturable absorbers, a passively Q-switching operation was...We demonstrated the efficient plasmon-induced nonlinear absorption of liquid metal GaInSn nanospheres prepared by a facile liquid-phase method. With GaInSn as saturable absorbers, a passively Q-switching operation was obtained at both 1.3 and 2 μm. The pulse width of 32 ns was achieved at 1.3 μm with repetition rate of44 kHz, single pulse energy of 51.9 μJ, and output power of 425 mW. Meanwhile, 510 ns and 92 kHz pulses with energy of 36.1 μJ and output power of 2.48 W were obtained at 2 μm. This work provides the potential of liquid metal for improving metal functions and flexible optical devices.展开更多
A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1....A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.展开更多
We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 1...We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 10-kHz repetition rate when pumped with a 10-W diode laser at 808 rim. The output wavelength is centered at 1554.3 nm with a 0.03-nm spectral width. Wavelength tuning is achieved by rotating a mirror and changing the crystal temperature.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it i...We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.展开更多
We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
基金Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040)the National Natural Science Foundation of China (Grant No. 61905193)。
文摘We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
基金the National Key Research and Development Program of China(Grant No.2017YFB0405203)the Shanxi“1331 Project”Key Subjects Construction,China(Grant No.1331KSC).
文摘Based on a theoretical model of Q-switched laser with the influences of the driving signal sent to the Pockels cell and the doping concentration of the gain medium taken into account,a method of achieving high energy sub-nanosecond Q-switched lasers is proposed and verified in experiment.When a Nd:YVO4 crystal with a doping concentration of 0.7 at.%is used as a gain medium and a driving signal with the optimal high-level voltage is applied to the Pockels cell,a stable single-transverse-mode electro-optical Q-switched laser with a pulse width of 0.77 ns and a pulse energy of 1.04 mJ operating at the pulse repetition frequency of 1 kHz is achieved.The precise tuning of the pulse width is also demonstrated.
文摘A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained under a pump power of 235 mW. An unbonded laser output experiment with the same dimension of the active material and the saturable absorber as the bonded laser output experiment is carried out. The reason why the output in the bonded laser is improved is determined.
基金Project supported by the National Natural Science Foundation of China (Grant No 60478017), the Science and Technology Development Program of Shandong Province, China and the Scientific Research Starting Foundation for Returned 0verseas Chinese Scholars, Ministry of Education, China.
文摘We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain medium are assumed to be of Gaussian spatial distributions. These rate equations are normalized by introducing some synthetic parameters and solved numerically, and a group of general curves are generated. Prom these curves we can understand the dependence of the Raman laser pulse characteristics on the parameters about the pumping, the gain medium, the Raman medium and the resonator. An illustrative calculation for a passively Q-switched Nd^3+:GdVO4 self-Raman laser is presented to demonstrate the usage of the curves and related formulas.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60490280, 60225005 and 60478046.
文摘A compact laser diode-pumped solid-state Nd:LuVO4 acousto-optic Q-switched laser is demonstrated at 916 nm of a quasi-three level for the first time. A pulse width of 130ns is observed when the pulse-repetition frequency is 10 kHz. The laser experiment shows that the Nd:Lu VO4 crystal can be used for efficient diode-pumped Q-switched lasers.
文摘To account for the effect of lower-level relaxation, we have derived a characteristic equation for describing the laser pulse from the modified rate equations for Q-switched lasers. The pulse temporal profile is related to the ratio of the lower-level lifetime to the cavity lifetime and the number of times the population inversion density is above the threshold. By solving the coupled rate equations numerically, the effect of terminal-level lifetime on pulse temporal behaviour is analysed. The mode is applied to the case of a diode-pumped Nd:YAG laser that is passively Q-switched by a Cr4+ :YAG absorber. Theoretical results show good agreement with the experiments.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974060 and U19A2077).
文摘We report pulsed laser diode(LD)end-pumped acoustic Q-switched Tm:YAG laser,Tm:LuAG laser,and Tm:LuYAG laser and the physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG are analyzed.The Tm:LuYAG laser is pumped by 785-nm and 788-nm pulses separately,and is compared with Tm:YAG laser.Different output energy values and output wavelengths of Tm:LuAYG lasers pumped by LDs with different wavelengths are obtained and compared with each other.When the repetition frequency is 100 Hz,the pulsed Tm:YAG laser has single pulse energy of 15.9 mJ,pulse width of 126.7 ns,and the center wavelength of 2013.36 nm,and the pulsed Tm:LuAG laser possesses single pulse energy of 11.8 mJ,pulse width of 252.4 ns,and the center wavelength of 2023.65 nm,and the pulsed Tm:LuYAG laser output energy values are 12.32 mJ and 12.25 mJ with the slope efficiencies of 12.5%and 11.85%,the center wavelengths of 2017.89 nm and 2027.11 nm,respectively,while the pump sources are 785-nm and 788-nm pulsed LDs,respectively.
文摘A high power continuous wave (CW) laser diode (LD) pumped acousto-optic Q-switched Nd:YVO4 laser is presented. A short pulse at the 1064 nm is obtained. With a repetition rate of 50 kHz,the maximum average output power of 5.72 W is achieved. The optical conversion efficiency and the slope efficiency are up to 28% and 32.4% respectively. At the repetition rate of 10 kHz and the pulse width of 16.3ns, the maximum single pulse energy of 286 μJ and the peak power of 13kW are acquired. The laser can be used as a signal source in the free-space optical communication. The output signal agrees with the modulate signal well.
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金support for this work through Grant, HiCoE (PRC-2022)the Universiti Malaya for the funding of this work through Grant Nos. RU005-2021 and MGO23-2022。
文摘We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha,China(Grant No.KQ2206003).
文摘We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber together with a 0.08-nmbandwidth polarization-maintaining fiber Bragg grating(FBG)acts as an ultra-narrow bandwidth filter to realize singlelongitudinal-mode(SLM)oscillation.The devices used in the laser are all kept polarized,so as to ensure linearly polarized laser output.Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved,producing a laser with a shortest pulse width of 1.36μs,a linewidth of 28.4 MHz,a repetition rate of 28.3 kHz-95.9 kHz,and a polarization extinction ratio of about 30 dB.It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection,beam combining,nonlinear frequency conversion,and other fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.
基金supported by the National Natural Science Foundation of China(NSFC)(No.11974220)。
文摘A new disordered crystal Nd:SrAl12O19(Nd:SRA)with an Nd3+doping concentration of 5%was successfully grown using the Czochralski method.A diode-pumped Nd:SRA Q-switched laser operating at 1049 nm was demonstrated for the first time,to the best of our knowledge.Based on an MXene Ti3C2Tx sheet,a high repetition rate of 201 kHz and a Q-switched pulse width of 346 ns were obtained when the absorbed pump power was 2.8 W.The peak power and single pulse energy were 1.87 W and 0.65μJ,respectively.
基金supported by the National Key R&D Program of China (Nos. 2017YFA0303700 and2019YFA0705000)the National Natural Science Foundation of China (Nos. 11774161,51890861,11690031,11627810,and 11674169)+1 种基金the Key R&D Program of Guangdong Province (No. 2018B030329001)the Leading-edge Technology Program of Jiangsu Natural Science Foundation (No. BK20192001)。
文摘We demonstrated the efficient plasmon-induced nonlinear absorption of liquid metal GaInSn nanospheres prepared by a facile liquid-phase method. With GaInSn as saturable absorbers, a passively Q-switching operation was obtained at both 1.3 and 2 μm. The pulse width of 32 ns was achieved at 1.3 μm with repetition rate of44 kHz, single pulse energy of 51.9 μJ, and output power of 425 mW. Meanwhile, 510 ns and 92 kHz pulses with energy of 36.1 μJ and output power of 2.48 W were obtained at 2 μm. This work provides the potential of liquid metal for improving metal functions and flexible optical devices.
文摘A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.
基金supported by National Science Council, Taiwan under contract NSC102-2221-E-007-100-MY2
文摘We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 10-kHz repetition rate when pumped with a 10-W diode laser at 808 rim. The output wavelength is centered at 1554.3 nm with a 0.03-nm spectral width. Wavelength tuning is achieved by rotating a mirror and changing the crystal temperature.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
文摘We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.