We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that t...We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.展开更多
A passive Q-switched flash-lamp-pumped Nd∶YAG laser with the ion-implanted semi-insulating GaAs wafer is reported.The wafer is implanted with 400keV As+ ions in the concentration of 10 16cm -2.Using GaAs wafer as a...A passive Q-switched flash-lamp-pumped Nd∶YAG laser with the ion-implanted semi-insulating GaAs wafer is reported.The wafer is implanted with 400keV As+ ions in the concentration of 10 16cm -2.Using GaAs wafer as an absorber and an output coupler,62ns pulse duration of single pulse is obtained.展开更多
Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepare...Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.展开更多
We demonstrate a passively Q-switched erbium-doped fiber laser (EDFL) using a copper nanoparticle (CuNP) thin film as the saturable absorber in a ring cavity. A stable Q-switched pulse operation is observed as the...We demonstrate a passively Q-switched erbium-doped fiber laser (EDFL) using a copper nanoparticle (CuNP) thin film as the saturable absorber in a ring cavity. A stable Q-switched pulse operation is observed as the CuNP saturable absorber (SA) is introduced in the cavity. The pulse repetition rate of the EDFL is observed to be proportional to the pump power, and is limited to 101.2kHz by the maximum pump power of 113.7mW. On the other hand, the pulse width reduces from 10.19μs to 4.28μs as the pump power is varied from 26.1 mW to 113.7mW. The findings suggest that CuNP SA could be useful as a potential saturable absorber for the development of the robust, compact, efficient and low cost Q-switched fiber laser operating at 1.5-μm region.展开更多
We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generat...We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.展开更多
We propose a new method to separate different orders of an all-fiber passive Q-switching stimulated Brillouin scattering(SBS) laser. We use two fiber Bragg gratings connected by two circulators for the filtering. We...We propose a new method to separate different orders of an all-fiber passive Q-switching stimulated Brillouin scattering(SBS) laser. We use two fiber Bragg gratings connected by two circulators for the filtering. We obtain a stabilized pulse laser and measure the pulse width of different orders. The first order of SBS has a central wavelength of 1549.75 nm, an average output power of 9 mW, and a pulse width of 400 ns. The pulse width of SBS is reduced by the higher-order signals with the larger fluctuations.展开更多
A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
With MoS2 as saturable absorber, passive Q-switching and Q-switched mode-locking operations of a Tm-doped calcium lithium niobium gallium garnet(Tm:CLNGG) laser were experimentally demonstrated. The Q-switched laser...With MoS2 as saturable absorber, passive Q-switching and Q-switched mode-locking operations of a Tm-doped calcium lithium niobium gallium garnet(Tm:CLNGG) laser were experimentally demonstrated. The Q-switched laser emitted a maximum average output power of 62 mW and highest pulse energy of 0.72 μJ. Q-switched mode locking was also obtained in the experiment. The research results will open up applications of MoS2 at the mid-infrared wavelength.展开更多
We report on the operation of passively Q-switched waveguide lasers at 1 μm wavelength based on a graphene∕WS_2 heterostructure as a saturable absorber(SA). The gain medium is a crystalline Nd:YVO_4 cladding wavegui...We report on the operation of passively Q-switched waveguide lasers at 1 μm wavelength based on a graphene∕WS_2 heterostructure as a saturable absorber(SA). The gain medium is a crystalline Nd:YVO_4 cladding waveguide produced by femtosecond laser writing. The nanosecond waveguide laser operation at 1064 nm has been realized with the maximum average output power of 275 m W and slope efficiency of 37%. In comparison with the systems based on single WS_2 or graphene SA, the lasing Q-switched by a graphene∕WS_2 heterostructure SA possesses advantages of a higher pulse energy and enhanced slope efficiency, indicating the promisingapplications of van der Waals heterostructures for ultrafast photonic devices.展开更多
We demonstrate a three-nanosecond equidistant sub-pulse multi-step Q-switched Nd:Y3 Al5 O12(Nd:YAG) laser.In the time interval of 100–1000 ns, three pulses with the same nanosecond interval and the same peak power ar...We demonstrate a three-nanosecond equidistant sub-pulse multi-step Q-switched Nd:Y3 Al5 O12(Nd:YAG) laser.In the time interval of 100–1000 ns, three pulses with the same nanosecond interval and the same peak power are obtained at the pulse width of 24 ns, 28 ns, and 36.6 ns, respectively.The energy is 32.5 m J, and the optical efficiency is 10.8%.The multi-step Q-switched method does not require the insertion of other optical elements into the traditional Q-switched laser, and it is very suitable to obtain pulse group output with several nanosecond pulse intervals.展开更多
In this work,we reported a new strategy to improve the nonlinear saturable absorption performance of magnetite(Fe_(3)O_(4))nanoparticles(FONPs)via the compositional engineering with the Ti_(3)C_(2) MXene in the near-i...In this work,we reported a new strategy to improve the nonlinear saturable absorption performance of magnetite(Fe_(3)O_(4))nanoparticles(FONPs)via the compositional engineering with the Ti_(3)C_(2) MXene in the near-infrared(NIR)region.Based on the DFT simulation,the band structures and work function were significantly modified by the Ti_(3)C_(2) MXene doping.By using the open-aperture Z-scan technology,the nonlinear optical features of the FONPs@Ti_(3)C_(2) nanocomposite were significantly improved,showing the great potential as the saturable absorber in the pulsed laser.With the nanocomposite as the saturable absorber,the passively Q-switched Nd:GdVO4 lasers emitted much shorter pulse durations when compared with the pristine FONP saturable absorber.These findings indicated that FONPs@Ti_(3)C_(2) heterostructure was a promising saturable absorber for the short pulse generation in the NIR region.展开更多
Graphene oxide carboxylic acid(COOH), a novel two-dimensional(2D) layered material with its unique optical and electronic properties, is discovered to exhibit the saturation of optical absorption under laser illum...Graphene oxide carboxylic acid(COOH), a novel two-dimensional(2D) layered material with its unique optical and electronic properties, is discovered to exhibit the saturation of optical absorption under laser illumination.Applying the liquid-phase exfoliation method, we prepare graphene oxide-COOH dispersions with deionized water and fabricate graphene oxide-COOH polyvinyl alcohol polymer composite film. We further obtain stable Q-switching pulse and mode-locked laser operation with a 22.7 MHz repetition rate and a 1.5 ps pulse duration by incorporating the graphene oxide-COOH-based saturable absorbers into the all-fiber erbium-doped fiber laser cavity. The experimental results show that the proposed graphene oxide-COOH material can act as an effective absorber for pulsed fiber lasers, which demonstrate potential applications in the area of ultrafast optics.展开更多
Developing new saturable absorbers for use in the mid-infrared region has practical significance for short-pulsed lasers and related scientific and industrial applications.The performance of gold nanorods(GNRs)as satu...Developing new saturable absorbers for use in the mid-infrared region has practical significance for short-pulsed lasers and related scientific and industrial applications.The performance of gold nanorods(GNRs)as saturable absorbers at novel mid-infrared wavelengths needs to be evaluated even though these benefit from ultrafast nonlinear responses and broadband saturable absorption.Passive Q-switching of an LD-pumped 2.3μm Tm:YLF laser using GNRs was successfully realized in this study.Pulses with an 843 ns pulse width and a 6.67 kHz repetition rate were achieved using this Q-switched laser.Results showed that GNRs provide promising passive Q-switches for 2.3μm Tm-doped lasers.展开更多
We demonstrate a dual-wavelength passively Q-switched Nd^(3+)-doped glass fiber laser using a few-layer topological insulator Bi2Se3 as a saturable absorber(SA) for the first time, to the best of our knowledge. T...We demonstrate a dual-wavelength passively Q-switched Nd^(3+)-doped glass fiber laser using a few-layer topological insulator Bi2Se3 as a saturable absorber(SA) for the first time, to the best of our knowledge. The laser resonator is a simple and compact linear cavity using two fiber end-facet mirrors. The SA is fabricated by Bi2Se3/polyvinyl alcohol composite film. By inserting the SA into the laser cavity, a stable Q-switching operation is achieved with the shortest pulse width and maximum pulse repetition rate of 601 ns and 205.2 kHz,respectively. The maximum average output power and maximum pulse energy obtained are about 6.6 mW and 38.8 nJ, respectively.展开更多
A highly stable Q-switched laser incorporating a mechanically exfoliated tungsten sulphoselenide (WSSe) thin sheet saturable absorber (SA) is proposed and demonstrated. The SA assembly, formed by sandwiching a thi...A highly stable Q-switched laser incorporating a mechanically exfoliated tungsten sulphoselenide (WSSe) thin sheet saturable absorber (SA) is proposed and demonstrated. The SA assembly, formed by sandwiching a thin WSSe sheet between two fiber ferrules within the erbium-doped fiber laser, is used to effectively modulate the laser cavity losses. The WSSe-based SA has a saturation intensity of ~0.006 MW∕cm^2 and a modulation depth of 7.8%, giving an optimum Q-switched laser output with a maximum repetition rate of 61.81 kHz and a minimum pulse width of 2.6 μs. The laser's highest output power of 0.45 mW and highest pulse energy of 7.31 nJ are achieved at the maximum pump power of 280.5 mW. The tunability of the cavity's output at the maximum pump power is analyzed with a C-band tunable bandpass filter, giving a broad tunable range of ~40 nm, from 1530 nm to 1570 nm. The output performance of the tunable Q-switched laser correlates well with the gain spectrum of erbium-doped fibers, with the shift in the gain profile as a result of the saturated SA.展开更多
The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for th...The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for the first time, to the best of our knowledge, with an average output power of 12.3 W and a maximum pulse energy of 10.3 mJ. The passive Q-switch laser was also the first acquired with an average output power of 3.3 W and per pulse energy of 23.31 μJ, and the beam quality factors of Mx^2 = 1.06 and My^2 = 1.06 were measured at the average output power of 2 W.展开更多
We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a t...We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.展开更多
We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film ...We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.展开更多
Research on novel ultrafast photonic devices with wide adaptability has become important scientific technical means to realize both scheme innovation and performance breakthrough in fiber laser generation.As types of ...Research on novel ultrafast photonic devices with wide adaptability has become important scientific technical means to realize both scheme innovation and performance breakthrough in fiber laser generation.As types of transition metal oxide,manganese dioxide(MnO_(2))materials exhibit remarkable properties including high photothermal stability,strong oxidation resistance,and excellent optical properties,making them promising candidate for utilization as modulation devices in nonlinear optics and ultrafast optics fields.We investigate the impact of MnO_(2)-based saturable absorber(SA)on the pulse characteristics.The experiment reveals that MnO_(2)-based SA supports effectively pulsed laser generation in wide pump power range and large dispersion parameter space with signal-to-noise ratio more than 85 dB.As far as we know,the pump power response range is outstanding among the most of the reported pulsed lasers,which is attributed to the large modulation depth of MnO_(2) SA.We also investigate the impact of dispersion on the characteristics of laser output,which is not involved in other similar works.This research indicates that MnO_(2) as a photonic device has vast potential in advanced ultrafast optics.展开更多
The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
基金supported by the Natural Science Foundation of Anhui Province (Grant No. 2208085QF217)the National Natural Science Foundation of China (Grant No. 52102012)the Hefei Institutes of Physical Science (HFIPS) Director’s Fund (Grant No. YZJJ2022QN08)。
文摘We demonstrate a high-energy and high-power pulse laser on a xenon lamp-pumped Er:YAP crystal. The laser performance and thermal focal lengths under different working frequencies are discussed. The results show that the thermal lens effect is gradually aggravated with the increase of working frequencies, and even working at 100 Hz, a single pulse energy of 234 m J can be achieved. A maximum average power of 41.5 W is achieved with a working frequency of 20 Hz and slope efficiency of 2.82%. This output power is much higher than other xenon lamp-pumped erbium laser devices.A Q-switched laser is demonstrated by using the TeO2crystal, the maximum output energies of 11.5 m J and 3.5 m J are obtained at 50 and 100 Hz, the corresponding peak powers are 93.4 k W and 17.2 kW, respectively.The laser wavelengths and beam quality factors are also characterized in the free-running and Q-switched modes. A higher pulse energy and peak power laser could be achieved further by improving the damage threshold of TeO2acousto-optical Q-switching. All the experimental results illustrate that the xenon lamp-pumped Er:YAP laser is a promising candidate for high-power and high-frequency mid-infrared laser devices.
文摘A passive Q-switched flash-lamp-pumped Nd∶YAG laser with the ion-implanted semi-insulating GaAs wafer is reported.The wafer is implanted with 400keV As+ ions in the concentration of 10 16cm -2.Using GaAs wafer as an absorber and an output coupler,62ns pulse duration of single pulse is obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674036)the Beijing Youth Top-notch Talent Support Program,China(Grant No.2017000026833ZK08)the Fund of State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
文摘Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.
基金Supported by the University of Malaya under Grant Nos PG173-2015B and PG004-2016A
文摘We demonstrate a passively Q-switched erbium-doped fiber laser (EDFL) using a copper nanoparticle (CuNP) thin film as the saturable absorber in a ring cavity. A stable Q-switched pulse operation is observed as the CuNP saturable absorber (SA) is introduced in the cavity. The pulse repetition rate of the EDFL is observed to be proportional to the pump power, and is limited to 101.2kHz by the maximum pump power of 113.7mW. On the other hand, the pulse width reduces from 10.19μs to 4.28μs as the pump power is varied from 26.1 mW to 113.7mW. The findings suggest that CuNP SA could be useful as a potential saturable absorber for the development of the robust, compact, efficient and low cost Q-switched fiber laser operating at 1.5-μm region.
基金Supported by the National Natural Science Foundation of China under Grant No 11574170
文摘We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.
基金Supported by the National Natural Science Foundation of China under Grant No 61675188the Open Fund of Key Laboratory Pulse Power Laser Technology of China under Grant No SKL2016KF03
文摘We propose a new method to separate different orders of an all-fiber passive Q-switching stimulated Brillouin scattering(SBS) laser. We use two fiber Bragg gratings connected by two circulators for the filtering. We obtain a stabilized pulse laser and measure the pulse width of different orders. The first order of SBS has a central wavelength of 1549.75 nm, an average output power of 9 mW, and a pulse width of 400 ns. The pulse width of SBS is reduced by the higher-order signals with the larger fluctuations.
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61008018 and 11421064)the National Basic Research Program of China (Grant No. 2013CBA01505)
文摘With MoS2 as saturable absorber, passive Q-switching and Q-switched mode-locking operations of a Tm-doped calcium lithium niobium gallium garnet(Tm:CLNGG) laser were experimentally demonstrated. The Q-switched laser emitted a maximum average output power of 62 mW and highest pulse energy of 0.72 μJ. Q-switched mode locking was also obtained in the experiment. The research results will open up applications of MoS2 at the mid-infrared wavelength.
基金111 Project of China(B13029)Strategic Priority Research Program of CAS(XDB16030700)+2 种基金Key Research Program of Frontier Science of CAS(QYZDB-SSWJSC041)National Natural Science Foundation of China(NSFC)(11274203,61522510)STCSM Excellent Academic Leader of Shanghai(17XD1403900)
文摘We report on the operation of passively Q-switched waveguide lasers at 1 μm wavelength based on a graphene∕WS_2 heterostructure as a saturable absorber(SA). The gain medium is a crystalline Nd:YVO_4 cladding waveguide produced by femtosecond laser writing. The nanosecond waveguide laser operation at 1064 nm has been realized with the maximum average output power of 275 m W and slope efficiency of 37%. In comparison with the systems based on single WS_2 or graphene SA, the lasing Q-switched by a graphene∕WS_2 heterostructure SA possesses advantages of a higher pulse energy and enhanced slope efficiency, indicating the promisingapplications of van der Waals heterostructures for ultrafast photonic devices.
基金supported by the National Natural Science Foundation of China (NSFC)(No.11974060)the Natural Science Foundation of Jilin Province (No.20190201266JC)。
文摘We demonstrate a three-nanosecond equidistant sub-pulse multi-step Q-switched Nd:Y3 Al5 O12(Nd:YAG) laser.In the time interval of 100–1000 ns, three pulses with the same nanosecond interval and the same peak power are obtained at the pulse width of 24 ns, 28 ns, and 36.6 ns, respectively.The energy is 32.5 m J, and the optical efficiency is 10.8%.The multi-step Q-switched method does not require the insertion of other optical elements into the traditional Q-switched laser, and it is very suitable to obtain pulse group output with several nanosecond pulse intervals.
基金This work was finically supported by the National Natural Science Foundation of China(NSFC)(Nos.12004213 and 21872084)the Fundamental Research Fund of Shandong University(No.2018TB044)the financial support from the Young Scholar Program of Shandong University。
文摘In this work,we reported a new strategy to improve the nonlinear saturable absorption performance of magnetite(Fe_(3)O_(4))nanoparticles(FONPs)via the compositional engineering with the Ti_(3)C_(2) MXene in the near-infrared(NIR)region.Based on the DFT simulation,the band structures and work function were significantly modified by the Ti_(3)C_(2) MXene doping.By using the open-aperture Z-scan technology,the nonlinear optical features of the FONPs@Ti_(3)C_(2) nanocomposite were significantly improved,showing the great potential as the saturable absorber in the pulsed laser.With the nanocomposite as the saturable absorber,the passively Q-switched Nd:GdVO4 lasers emitted much shorter pulse durations when compared with the pristine FONP saturable absorber.These findings indicated that FONPs@Ti_(3)C_(2) heterostructure was a promising saturable absorber for the short pulse generation in the NIR region.
基金supported by the National Natural Science Foundation of China(No.61690222)the CAS/SAFEA international Partnership Program for creative Research Teams
文摘Graphene oxide carboxylic acid(COOH), a novel two-dimensional(2D) layered material with its unique optical and electronic properties, is discovered to exhibit the saturation of optical absorption under laser illumination.Applying the liquid-phase exfoliation method, we prepare graphene oxide-COOH dispersions with deionized water and fabricate graphene oxide-COOH polyvinyl alcohol polymer composite film. We further obtain stable Q-switching pulse and mode-locked laser operation with a 22.7 MHz repetition rate and a 1.5 ps pulse duration by incorporating the graphene oxide-COOH-based saturable absorbers into the all-fiber erbium-doped fiber laser cavity. The experimental results show that the proposed graphene oxide-COOH material can act as an effective absorber for pulsed fiber lasers, which demonstrate potential applications in the area of ultrafast optics.
基金Project supported by the National Natural Science Foundation of China(Nos.61875077 and 61911530131)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJA510001)。
文摘Developing new saturable absorbers for use in the mid-infrared region has practical significance for short-pulsed lasers and related scientific and industrial applications.The performance of gold nanorods(GNRs)as saturable absorbers at novel mid-infrared wavelengths needs to be evaluated even though these benefit from ultrafast nonlinear responses and broadband saturable absorption.Passive Q-switching of an LD-pumped 2.3μm Tm:YLF laser using GNRs was successfully realized in this study.Pulses with an 843 ns pulse width and a 6.67 kHz repetition rate were achieved using this Q-switched laser.Results showed that GNRs provide promising passive Q-switches for 2.3μm Tm-doped lasers.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61275050)the Project funded by the Department of Education of Guizhou Province(No.[2016]140)+3 种基金the Science and Technology Foundation of Guizhou Province(Nos.[2014]2124,[2010]2146,and[2009]06)the Science and Technology Plan Projects of Guizhou Province(No.SY2013[3055])the Science-Technology Union Foundation of Guizhou Province(No.[2014]7045)the International Science-Technology cooperation project of Guizhou Province of China(No.[2013]7019)
文摘We demonstrate a dual-wavelength passively Q-switched Nd^(3+)-doped glass fiber laser using a few-layer topological insulator Bi2Se3 as a saturable absorber(SA) for the first time, to the best of our knowledge. The laser resonator is a simple and compact linear cavity using two fiber end-facet mirrors. The SA is fabricated by Bi2Se3/polyvinyl alcohol composite film. By inserting the SA into the laser cavity, a stable Q-switching operation is achieved with the shortest pulse width and maximum pulse repetition rate of 601 ns and 205.2 kHz,respectively. The maximum average output power and maximum pulse energy obtained are about 6.6 mW and 38.8 nJ, respectively.
基金supported by the Ministry of Higher Education,Malaysia(Grant No.LRGS(2015)NGOD/UM/KPT)the University of Malaya(Grant Nos.RU001-2017 and RP 029A–15 AFR)
文摘A highly stable Q-switched laser incorporating a mechanically exfoliated tungsten sulphoselenide (WSSe) thin sheet saturable absorber (SA) is proposed and demonstrated. The SA assembly, formed by sandwiching a thin WSSe sheet between two fiber ferrules within the erbium-doped fiber laser, is used to effectively modulate the laser cavity losses. The WSSe-based SA has a saturation intensity of ~0.006 MW∕cm^2 and a modulation depth of 7.8%, giving an optimum Q-switched laser output with a maximum repetition rate of 61.81 kHz and a minimum pulse width of 2.6 μs. The laser's highest output power of 0.45 mW and highest pulse energy of 7.31 nJ are achieved at the maximum pump power of 280.5 mW. The tunability of the cavity's output at the maximum pump power is analyzed with a C-band tunable bandpass filter, giving a broad tunable range of ~40 nm, from 1530 nm to 1570 nm. The output performance of the tunable Q-switched laser correlates well with the gain spectrum of erbium-doped fibers, with the shift in the gain profile as a result of the saturated SA.
基金National Natural Science Foundation of China(NSFC)(61378029,61775053,51572053,51777046)Science Foundation for Outstanding Youths of Heilongjiang Province(JC2016016)Science Foundation for Youths of Heilongjiang Province(QC2017078)
文摘The active/passive Q-switching operation of a 2 [tm a-cut Tm,Ho:YAP laser was experimentally demonstrated with an acousto-optical Q-switch/MoS2 saturable absorber mirror. The active Q-switch laser was operated for the first time, to the best of our knowledge, with an average output power of 12.3 W and a maximum pulse energy of 10.3 mJ. The passive Q-switch laser was also the first acquired with an average output power of 3.3 W and per pulse energy of 23.31 μJ, and the beam quality factors of Mx^2 = 1.06 and My^2 = 1.06 were measured at the average output power of 2 W.
基金support for this work through Grant, HiCoE (PRC-2022)the Universiti Malaya for the funding of this work through Grant Nos. RU005-2021 and MGO23-2022。
文摘We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.
基金Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040)the National Natural Science Foundation of China (Grant No. 61905193)。
文摘We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
基金Project supported by the National Natural Science Foundation of China(Grant No.12164030)Young Science and Technology Talents of Inner Mongolia(Grant No.NJYT22101)the Central Government Guides Local Science and Technology Development Fund Projects(Grant No.2023ZY0005).
文摘Research on novel ultrafast photonic devices with wide adaptability has become important scientific technical means to realize both scheme innovation and performance breakthrough in fiber laser generation.As types of transition metal oxide,manganese dioxide(MnO_(2))materials exhibit remarkable properties including high photothermal stability,strong oxidation resistance,and excellent optical properties,making them promising candidate for utilization as modulation devices in nonlinear optics and ultrafast optics fields.We investigate the impact of MnO_(2)-based saturable absorber(SA)on the pulse characteristics.The experiment reveals that MnO_(2)-based SA supports effectively pulsed laser generation in wide pump power range and large dispersion parameter space with signal-to-noise ratio more than 85 dB.As far as we know,the pump power response range is outstanding among the most of the reported pulsed lasers,which is attributed to the large modulation depth of MnO_(2) SA.We also investigate the impact of dispersion on the characteristics of laser output,which is not involved in other similar works.This research indicates that MnO_(2) as a photonic device has vast potential in advanced ultrafast optics.
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.