期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research progress in rare earths and their composites based electrode materials for supercapacitors 被引量:2
1
作者 Subasri Arunachalam Balakrishnan Kirubasankar +4 位作者 Duo Pan Hu Liu Chao Yan Zhanhu Guo Subramania Angaiah 《Green Energy & Environment》 SCIE CSCD 2020年第3期259-273,共15页
Supercapacitor is an imminent potential energy storage system,and acts as a booster to the batteries and fuel cells to provide necessary power density.In the last decade,carbon and carbonaceous materials,conducting po... Supercapacitor is an imminent potential energy storage system,and acts as a booster to the batteries and fuel cells to provide necessary power density.In the last decade,carbon and carbonaceous materials,conducting polymers and transition metal oxide/hydroxide based electrode materials have been made to show a remarkable electrochemical performance.Rare-earth materials have attracted significant research attention as an electrode material for supercapacitor applications based on their physicochemical properties.In this review,rare earth metals,rare earth metal oxides/hydroxides,rare-earth metal chalcogenides,rare-earth metal/carbon composites and rare-earth metal/metal oxide composites based electrode materials are discussed for supercapacitors.We also discuss the energy chemistry of rare-earth metal-based materials.Besides the factors that affect the performance of the electrode materials,their evaluation methods and supercapacitor performances are discussed in details.Finally,the future outlook in rare-earth-based electrode materials is revealed towards its current developments for supercapacitor applications. 展开更多
关键词 rare-earth metals rare-earth metal oxides rare earth metal hydroxides SUPERCAPACITOR Electrode materials
下载PDF
Preparation,luminescence and photofunctional performances of a hybrid layered gadolinium-europium hydroxide 被引量:1
2
作者 Lu Liu Jingjie Yu +4 位作者 Shikao Shi Jiye Wang Huihua Song Ruikang Zhang Lianshe Fu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第9期1437-1444,I0004,共9页
The design and fabrication of rare earth ions incorporated into the inorganic/organic hybrid materials have attracted growing attention for seeking improved optical properties and photofunctional performances.In this ... The design and fabrication of rare earth ions incorporated into the inorganic/organic hybrid materials have attracted growing attention for seeking improved optical properties and photofunctional performances.In this paper,a novel hybrid composite based on the layered rare earth hydroxides was successfully prepared by the ion-exchange and intercalation chemical process.The rare earth elements in the composite contain gadolinium(Gd)and europium(Eu)and the molar ratio of Gd to Eu is kept constant at 1.9:0.1.Organic sodium dodecyl sulfonate and dye coumarin-3-carboxyllc acid are simultaneously incorporated into the layered rare earth hydroxides as supporting agent and light-harvesting antenna,respectively.The resulting hybrid layered rare earth hydroxides exhibit the enlarged interlayer distance with about 2.60 nm,and the chemical composition was confirmed through X-ray diffraction,carbon,hydrogen and nitrogen(CHN)elemental analysis,infrared spectroscopy,and thermogravimetric analysis.The layered solid compound shows the characteristic red emission corresponding to the^(5)D_(0)→^(7)F_(2)transition of Eu^(3+)ion,and the luminescence intensity of the optimized compound is greatly enhanced as compared to its corresponding nitrate and the hybrid composite without the introduction of dye molecule.The hybrid layered rare earth hydroxides can be exfoliated into bright colloidal solution,which show superior recognition capability to Cu^(2+)ion with the distinct luminescence quenching.The large quenching constant(1.4×10^(4)L/mol)and low detection limit(0.35μmol/L)are achieved for Cu^(2+)ion,implying a"turn-off"fluorescent sensor for Cu^(2+)detection.Moreover,a transparent film was prepared based on the colloidal solution and displays the typical red emission in folded shape.The new hybrid compound with enhanced luminescence and excellent photofunctional performances is expected to be applied in the fields of fluorescent sensing and flexible optical devices. 展开更多
关键词 Layered rare earth hydroxides Luminescence Eu^(3+)ion Gd^(3+)ion Ion-exchange Intercalation chemistry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部