期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Spatial Interpolation of Soil Texture Using Compositional Kriging and Regression Kriging with Consideration of the Characteristics of Compositional Data and Environment Variables 被引量:17
1
作者 ZHANG Shi-wen SHEN Chong-yang +3 位作者 CHEN Xiao-yang YE Hui-chun HUANG Yuan-fang LAI Shuang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第9期1673-1683,共11页
The spatial interpolation for soil texture does not necessarily satisfy the constant sum and nonnegativity constraints. Meanwhile, although numeric and categorical variables have been used as auxiliary variables to im... The spatial interpolation for soil texture does not necessarily satisfy the constant sum and nonnegativity constraints. Meanwhile, although numeric and categorical variables have been used as auxiliary variables to improve prediction accuracy of soil attributes such as soil organic matter, they (especially the categorical variables) are rarely used in spatial prediction of soil texture. The objective of our study was to comparing the performance of the methods for spatial prediction of soil texture with consideration of the characteristics of compositional data and auxiliary variables. These methods include the ordinary kriging with the symmetry logratio transform, regression kriging with the symmetry logratio transform, and compositional kriging (CK) approaches. The root mean squared error (RMSE), the relative improvement value of RMSE and Aitchison's distance (DA) were all utilized to assess the accuracy of prediction and the mean squared deviation ratio was used to evaluate the goodness of fit of the theoretical estimate of error. The results showed that the prediction methods utilized in this paper could enable interpolation results of soil texture to satisfy the constant sum and nonnegativity constraints. Prediction accuracy and model fitting effect of the CK approach were better, suggesting that the CK method was more appropriate for predicting soil texture. The CK method is directly interpolated on soil texture, which ensures that it is optimal unbiased estimator. If the environment variables are appropriately selected as auxiliary variables, spatial variability of soil texture can be predicted reasonably and accordingly the predicted results will be satisfied. 展开更多
关键词 compositional kriging auxiliary variables regression kriging symmetry logratio transform
下载PDF
Spatial distribution of snow depth based on geographically weighted regression kriging in the Bayanbulak Basin of the Tianshan Mountains, China 被引量:5
2
作者 LIU Yang LI Lan-hai +2 位作者 CHEN Xi YANG Jin-Ming HAO Jian-Sheng 《Journal of Mountain Science》 SCIE CSCD 2018年第1期33-45,共13页
Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect ... Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect of geographically weighted regression kriging(GWRK)and regression kriging(RK)in a spatial interpolation of regional snow depth.The auxiliary variables are analyzed using correlation coefficients and the variance inflation factor(VIF).Three variables,Height,topographic ruggedness index(TRI),and land surface temperature(LST),are used as explanatory variables to establish a regression model for snow depth.The estimated spatial distribution of snow depth in the Bayanbulak Basin of the Tianshan Mountains in China with a spatial resolution of 1 km is obtained.The results indicate that 1)the result of GWRK's accuracy is slightly higher than that of RK(R^2=0.55 vs.R^2=0.50,RMSE(root mean square error)=0.102 m vs.RMSE=0.077 m);2)for the subareas,GWRK and RK exhibit similar estimation results of snow depth.Areas in the Bayanbulak Basin with a snow depth greater than 0.15m are mainly distributed in an elevation range of 2632.00–3269.00 m and the snow in this area comprises 45.00–46.00% of the total amount of snow in this basin.However,the GWRK resulted in more detailed information on snow depth distribution than the RK.The final conclusion is that GWRK is better suited for estimating regional snow depth distribution. 展开更多
关键词 Snow depth Spatial distribution regression kriging Geographically weighted regression kriging
原文传递
A hybrid model for predicting spatial distribution of soil organic matter in a bamboo forest based on general regression neural network and interative algorithm
3
作者 Eryong Liu Jian Liu +2 位作者 Kunyong Yu Yunjia Wang Ping He 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第5期1673-1680,共8页
A general regression neural network model,combined with an interative algorithm(GRNNI)using sparsely distributed samples and auxiliary environmental variables was proposed to predict both spatial distribution and vari... A general regression neural network model,combined with an interative algorithm(GRNNI)using sparsely distributed samples and auxiliary environmental variables was proposed to predict both spatial distribution and variability of soil organic matter(SOM)in a bamboo forest.The auxiliary environmental variables were:elevation,slope,mean annual temperature,mean annual precipitation,and normalized difference vegetation index.The prediction accuracy of this model was assessed via three accuracy indices,mean error(ME),mean absolute error(MAE),and root mean squared error(RMSE)for validation in sampling sites.Both the prediction accuracy and reliability of this model were compared to those of regression kriging(RK)and ordinary kriging(OK).The results show that the prediction accuracy of the GRNNI model was higher than that of both RK and OK.The three accuracy indices(ME,MAE,and RMSE)of the GRNNI model were lower than those of RK and OK.Relative improvements of RMSE of the GRNNI model compared with RK and OK were 13.6%and 17.5%,respectively.In addition,a more realistic spatial pattern of SOM was produced by the model because the GRNNI model was more suitable than multiple linear regression to capture the nonlinear relationship between SOM and the auxiliary environmental variables.Therefore,the GRNNI model can improve both prediction accuracy and reliability for determining spatial distribution and variability of SOM. 展开更多
关键词 General regression neural network Interative algorithm Ordinary kriging regression kriging Spatial prediction Soil organic matter
下载PDF
Implicit Continuous User Authentication for Mobile Devices based on Deep Reinforcement Learning 被引量:1
4
作者 Christy James Jose M.S.Rajasree 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1357-1372,共16页
The predominant method for smart phone accessing is confined to methods directing the authentication by means of Point-of-Entry that heavily depend on physiological biometrics like,fingerprint or face.Implicit continuou... The predominant method for smart phone accessing is confined to methods directing the authentication by means of Point-of-Entry that heavily depend on physiological biometrics like,fingerprint or face.Implicit continuous authentication initiating to be loftier to conventional authentication mechanisms by continuously confirming users’identities on continuing basis and mark the instant at which an illegitimate hacker grasps dominance of the session.However,divergent issues remain unaddressed.This research aims to investigate the power of Deep Reinforcement Learning technique to implicit continuous authentication for mobile devices using a method called,Gaussian Weighted Cauchy Kriging-based Continuous Czekanowski’s(GWCK-CC).First,a Gaussian Weighted Non-local Mean Filter Preprocessing model is applied for reducing the noise pre-sent in the raw input face images.Cauchy Kriging Regression function is employed to reduce the dimensionality.Finally,Continuous Czekanowski’s Clas-sification is utilized for proficient classification between the genuine user and attacker.By this way,the proposed GWCK-CC method achieves accurate authen-tication with minimum error rate and time.Experimental assessment of the pro-posed GWCK-CC method and existing methods are carried out with different factors by using UMDAA-02 Face Dataset.The results confirm that the proposed GWCK-CC method enhances authentication accuracy,by 9%,reduces the authen-tication time,and error rate by 44%,and 43%as compared to the existing methods. 展开更多
关键词 Deep reinforcement learning gaussian weighted non-local meanfilter cauchy kriging regression continuous czekanowski’s implicit continuous authentication mobile devices
下载PDF
Spatial variation and prediction of forest biomass in a heterogeneous landscape 被引量:3
5
作者 S. Lamsal D. M. Rizzo R. K. Meentemeyer 《Journal of Forestry Research》 SCIE CAS CSCD 2012年第1期13-22,共10页
Large areas assessments of forest bioinass distribution are a challenge in heterogeneous landscapes, where variations in tree growth and species composition occur over short distances. In this study, we use statistica... Large areas assessments of forest bioinass distribution are a challenge in heterogeneous landscapes, where variations in tree growth and species composition occur over short distances. In this study, we use statistical and geospatial modeling on densely sample.d forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur, California. We estimated biomass in 280 forest Plots (one plot per 2.85 km2) and meas- ured an array of ecological (vegetation community type, distance to edge, amount of surrounding non-forest vegetation, soil properties, fire history) and physiographic drivers (elevation, potential soil moisture and solar radiation, proximity to the coast) of tree growth at each plot location. Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 kin. Regression tree (RT) models showed that both physiographic and ecological factors influenced bio- mass distribution. Across randomly selected sample densities (sample size 112 to 280), ecological effects of vegetation community type and distance to forest edge, and physiographic effects of elevation, potential soil moisture and solar radiation were the most consistent predictors of biomass. Topographic moisture index and potential solar radiation had apositive effect on biomass, indicating the importance of topographically- mediated energy and moisture on plant growth and biomass accumula- tion. RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals. Regression kriging model, developed from RT combined with kriging of regression residuals, was used to map biomass across the Big Sur. This study dem- onstrates how statistical and geospatial modeling can be used to dis- criminate the relative importance of physiographic and ecologic effects on forest biomass and develop spatial models to predict and map biomass distribution across a heterogeneous landscape. 展开更多
关键词 forest biomass landscape heterogeneity spatial variation SEMIVARIOGRAM regression tree regression kriging Big Sur California
下载PDF
A Hybrid Geostatistical Method for Estimating Citywide Traffic Volumes - A Case Study of Edmonton, Canada
6
作者 Mingjian Wu Tae J.Kwon Karim El-Basyouny 《Journal of Geographical Research》 2022年第2期52-68,共17页
Traffic volume information has long played an important role in many transportation related works,such as traffic operations,roadway design,air quality control,and policy making.However,monitoring traffic volumes over... Traffic volume information has long played an important role in many transportation related works,such as traffic operations,roadway design,air quality control,and policy making.However,monitoring traffic volumes over a large spatial area is not an easy task due to the significant amount of time and manpower required to collect such large-scale datasets.In this study,a hybrid geostatistical approach,named Network Regression Kriging,has been developed to estimate urban traffic volumes by incorporating auxiliary variables such as road type,speed limit,and network accessibility.Since standard kriging is based on Euclidean distances,this study implements road network distances to improve traffic volumes estimations.A case study using 10-year of traffic volume data collected within the city of Edmonton was conducted to demonstrate the robustness of the model developed herein.Results suggest that the proposed hybrid model significantly outperforms the standard kriging method in terms of accuracy by 4.0%overall,especially for a large-scale network.It was also found that the necessary stationarity assumption for kriging did not hold true for a large network whereby separate estimations for each road type performed significantly better than a general estimation for the overall network by 4.12%. 展开更多
关键词 Traffic volume Geographical information system Spatial modelling Hybrid geostatistics Network regression kriging
下载PDF
Geostatistical modelling and mapping of nematode-based soil ecological quality indices in a polluted nature reserve 被引量:3
7
作者 Israel O.IKOYI Gerard B.M.HEUVELINK Ron G.M.DE GOEDE 《Pedosphere》 SCIE CAS CSCD 2021年第5期670-682,共13页
Nematodes are indicators of soil quality and soil health.Knowledge of the relationships between nematode-based soil quality indices and environmental properties is beneficial for assessing environmental threats on soi... Nematodes are indicators of soil quality and soil health.Knowledge of the relationships between nematode-based soil quality indices and environmental properties is beneficial for assessing environmental threats on soil biota.This study evaluated the spatial distribution of nematode-based soil quality indices in a 23-ha heavy metal-polluted nature reserve using geostatistical methods.We expected that a selection of abiotic soil properties(pH and moisture,clay,organic matter,cadmium(Cd),and zinc(Zn)contents)could explain a significant portion of the spatial variation of the indices and that regression kriging could more accurately model their spatial distribution than ordinary kriging.A stratified simple random sampling scheme was used to select 80 locations where soil samples were taken to extract nematodes and derive the indices.The area had a distinct gradient in soil properties with Cd and Zn content ranging from 0.07 to 68.9 and 5.3 to 1329 mg kg^(-1),respectively.Linear regression models were fitted to describe the relationships between the indices and soil properties.By also modelling the spatial correlation structure of regression residuals using spherical semivariograms,regression kriging was used to produce maps of the indices.The regression models explained between 21% and 44% of the total original variance in the indices.Soil pH was a significant explanatory variable in almost all cases,while heavy metal conent had a remarkably low effect.In some cases,the regression residuals had spatial structure.Independent validation indicated that in all cases,regression kriging performed slightly better because of having lower values of the root mean square prediction error and a mean prediction error closer to zero than ordinary kriging.This study showed the importance of soil properties in explaining the spatial distribution of biological soil quality indices in ecological risk assessment. 展开更多
关键词 ecological risk assessment heavy metals model validation regression kriging semivariance analysis soil property spatial structure
原文传递
Using Digital Elevation Model to Improve Soil pH Prediction in an Alpine Doline 被引量:1
8
作者 A. CASTRIGNANO G. BUTTAFUOCO +1 位作者 R. COMOLLI A. CASTRIGNANO 《Pedosphere》 SCIE CAS CSCD 2011年第2期259-270,共12页
Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled loc... Among spatial interpolation techniques,geostatistics is generally preferred because it takes into account the spatial correlation between neighbouring observations in order to predict attribute values at unsampled locations.A doline of approximately 15 000 m 2 at 1 900 m above sea level (North Italy) was selected as the study area to estimate a digital elevation model (DEM) using geostatistics,to provide a realistic distribution of the errors and to demonstrate whether using widely available secondary data provided more accurate estimates of soil pH than those obtained by univariate kriging.Elevation was measured at 467 randomly distributed points that were converted into a regular DEM using ordinary kriging.Further,110 pits were located using spatial simulated annealing (SSA) method.The interpolation techniques were multi-linear regression analysis (MLR),ordinary kriging (OK),regression kriging (RK),kriging with external drift (KED) and multi-collocated ordinary cokriging (CKmc).A cross-validation test was used to assess the prediction performances of the different algorithms and then evaluate which methods performed best.RK and KED yielded better results than the more complex CKmc and OK.The choice of the most appropriate interpolation method accounting for redundant auxiliary information was strongly conditioned by site specific situations. 展开更多
关键词 kriging with external drift multi-collocated ordinary cokriging multi-linear regression ordinary kriging regression kriging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部