Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widely distributed and destructive fungal diseases worldwide. Since 1995, most Chinese wheat cultivars have lost their stripe rust r...Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widely distributed and destructive fungal diseases worldwide. Since 1995, most Chinese wheat cultivars have lost their stripe rust resistance due to the subsequent emergence of the new races CYR30, CYR31, CYR32, and CYR33 (Han et al., 2010). Therefore, it is necessary to seek effective resistance genes and develop new resistance germ- plasm for wheat resistance breeding.展开更多
The wild relatives of wheat (Triticum aestivum L.) contain tremendous amounts of potentially useful genes and represent a promising source of genetic diversity for wheat improvement (Bommineni and Jauhar, 1997). T...The wild relatives of wheat (Triticum aestivum L.) contain tremendous amounts of potentially useful genes and represent a promising source of genetic diversity for wheat improvement (Bommineni and Jauhar, 1997). Thinopyrum ponticum (Popd.) Barkworth and D. R. Dewey [syn. Agropyron elongatum (Host) P. Beauv., Elytrigia pontica (Podp.) Holub, Lophopy- rum ponticum (Podp.) A. L6ve] (2n = 10x = 70), has high crossability with various Triticum species. Numerous studies have shown that Th. ponticum carries many potentially valu- able resistance genes against biotic and abiotic stresses (Shannon, 1978; Cox, 1991; Zheng et al., 2014a,b). Transferring the useful genes from Th. ponticum to common wheat through chromosome engineering had been a successful way to enhance the resistance of wheat to pests and diseases (Sharma et al., 1989; McIntosh, 1991).展开更多
基金supported by the grants from the National High Technology Research and Development Program of China (No. 2011AA100102)the Chinese Academy of Sciences (No. KSCX2-EW-N-02)
文摘Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widely distributed and destructive fungal diseases worldwide. Since 1995, most Chinese wheat cultivars have lost their stripe rust resistance due to the subsequent emergence of the new races CYR30, CYR31, CYR32, and CYR33 (Han et al., 2010). Therefore, it is necessary to seek effective resistance genes and develop new resistance germ- plasm for wheat resistance breeding.
基金supported by the grants from the National High-Tech Research and Development Program of China (No. 2011AA1001)the National Key Technology R&D Program of China (No. 2013BAD05B01)the National Natural Science Foundation of China (No. 31171539)
文摘The wild relatives of wheat (Triticum aestivum L.) contain tremendous amounts of potentially useful genes and represent a promising source of genetic diversity for wheat improvement (Bommineni and Jauhar, 1997). Thinopyrum ponticum (Popd.) Barkworth and D. R. Dewey [syn. Agropyron elongatum (Host) P. Beauv., Elytrigia pontica (Podp.) Holub, Lophopy- rum ponticum (Podp.) A. L6ve] (2n = 10x = 70), has high crossability with various Triticum species. Numerous studies have shown that Th. ponticum carries many potentially valu- able resistance genes against biotic and abiotic stresses (Shannon, 1978; Cox, 1991; Zheng et al., 2014a,b). Transferring the useful genes from Th. ponticum to common wheat through chromosome engineering had been a successful way to enhance the resistance of wheat to pests and diseases (Sharma et al., 1989; McIntosh, 1991).