Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mic...Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mice were used to examine the lineage differentiation of SOX2-positive cells during the development of cerebral cortex.Primary NSCs/astrocytes culture,ChIP-seq and Western Blot were adopted to analyze and verify the expression of candidate genes.Pharmacological manipulation,neurosphere formation,photochemical ischemia,immunofluorescence staining and behavior tests were adopted to evaluate the effects of activating DRD2 signaling on astrocytic dedifferentiation.Results:Immunofluorescence staining demonstrated the NSC-astrocyte switch of SOX2-expression in the normal development of cerebral cortex.ChIP-seq revealed enrichment of DRD2 signaling by SOX2-bound enhancers in NSCs and SOX2-bound promoters in astrocytes.Western Blot and immunofluorescence staining verified the expression of DRD2 in NSCs and reactive astrocytes.Application of quinagolide hydrocholoride(QH),an agonist of DRD2,significantly promoted astrocytic dedifferentiation both in vitro and in vivo following ischemia.In addition,quinagolide hydrocholoride treatment improved locomotion recovery.Conclusion:Activating DRD2 signaling facilitates astrocytic dedifferentiation and may be used to treat ischemic stroke.展开更多
Oral squamous cell carcinoma(OSCC)is the most common oral cancers worldwide,accounting for over 90%of all oral malignancies[1].Despite encouraging improvements in therapeutic approaches,including surgical resection,ch...Oral squamous cell carcinoma(OSCC)is the most common oral cancers worldwide,accounting for over 90%of all oral malignancies[1].Despite encouraging improvements in therapeutic approaches,including surgical resection,chemotherapy,and radiotherapy,the five-year overall survival rate of OSCC has not been improved significantly over the past decades,mainly due to the high ratio of tumor recurrence and metastasis.展开更多
The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neuro...The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neurogenesis.Using 5′-bromo-2′-deoxyuridine labeling,we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia.Nestin-Cre^(ER)-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells.Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling,we observed maturation of locally generated new neurons.Furthermore,fate tracing analyses using PDGFRα-,GFAP-,and Sox2-Cre^(ER) mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex.In addition,a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta.Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex,which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future.展开更多
Esophageal squamous cell carcinoma(ESCC)is among the most prevalent causes of cancer-related death in patients worldwide.Resistance to immunotherapy and chemotherapy results in worse survival outcomes in ESCC.It is ur...Esophageal squamous cell carcinoma(ESCC)is among the most prevalent causes of cancer-related death in patients worldwide.Resistance to immunotherapy and chemotherapy results in worse survival outcomes in ESCC.It is urgent to explore the underlying molecular mechanism of immune evasion and chemoresistance in ESCC.Here,we conducted RNA-sequencing analysis in ten ESCC tissues from cisplatin-based neoadjuvant chemotherapy patients.We found that DMRTA1 was extremely upregulated in the non-pathologic complete response(non-pCR)group.The proliferation rate of esophageal squamous carcinoma cells was markedly decreased after knockdown of DMRTA1 expression,which could increase cisplatin sensitivity in ESCC.Additionally,suppression of DMRTA1 could decrease the immune escape of esophageal squamous carcinoma cells.Further mechanistic studies suggest that DMRTA1 can promote its expression by binding to the promoter of SOX2,which plays important roles in the progression and chemoresistance of ESCC in the form of positive feedback.Therefore,DMRTA1 could be a potential target to suppress immune escape and overcome chemoresistance in ESCC.展开更多
文摘Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mice were used to examine the lineage differentiation of SOX2-positive cells during the development of cerebral cortex.Primary NSCs/astrocytes culture,ChIP-seq and Western Blot were adopted to analyze and verify the expression of candidate genes.Pharmacological manipulation,neurosphere formation,photochemical ischemia,immunofluorescence staining and behavior tests were adopted to evaluate the effects of activating DRD2 signaling on astrocytic dedifferentiation.Results:Immunofluorescence staining demonstrated the NSC-astrocyte switch of SOX2-expression in the normal development of cerebral cortex.ChIP-seq revealed enrichment of DRD2 signaling by SOX2-bound enhancers in NSCs and SOX2-bound promoters in astrocytes.Western Blot and immunofluorescence staining verified the expression of DRD2 in NSCs and reactive astrocytes.Application of quinagolide hydrocholoride(QH),an agonist of DRD2,significantly promoted astrocytic dedifferentiation both in vitro and in vivo following ischemia.In addition,quinagolide hydrocholoride treatment improved locomotion recovery.Conclusion:Activating DRD2 signaling facilitates astrocytic dedifferentiation and may be used to treat ischemic stroke.
基金supported by the National Natural Science Foundation of China(Grant No.:82002877)the Scientific Research Foundation for Recruited Talents,West China Hospital of Stomatology,Sichuan University,China(Grant No.:QDJF2019-3)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.:YJ201987)Sichuan Science and Technology Program,China(Grant No.:2021ZYD0090).
文摘Oral squamous cell carcinoma(OSCC)is the most common oral cancers worldwide,accounting for over 90%of all oral malignancies[1].Despite encouraging improvements in therapeutic approaches,including surgical resection,chemotherapy,and radiotherapy,the five-year overall survival rate of OSCC has not been improved significantly over the past decades,mainly due to the high ratio of tumor recurrence and metastasis.
基金supported by the National Natural Science Foundation of China,Nos.82171346(to YZW)82171269(to JLY)+1 种基金82171471(to HF)Beijing Nova Program,No.Z201100006820076(to JLY).
文摘The adult cortex has long been regarded as non-neurogenic.Whether injury can induce neurogenesis in the adult cortex is still controversial.Here,we report that focal ischemia stimulates a transient wave of local neurogenesis.Using 5′-bromo-2′-deoxyuridine labeling,we demonstrated a rapid generation of doublecortin-positive neuroblasts that died quickly in mouse cerebral cortex following ischemia.Nestin-Cre^(ER)-based cell ablation and fate mapping showed a small contribution of neuroblasts by subventricular zone neural stem cells.Using a mini-photothrombotic ischemia mouse model and retrovirus expressing green fluorescent protein labeling,we observed maturation of locally generated new neurons.Furthermore,fate tracing analyses using PDGFRα-,GFAP-,and Sox2-Cre^(ER) mice showed a transient wave of neuroblast generation in mild ischemic cortex and identified that Sox2-positive astrocytes were the major neurogenic cells in adult cortex.In addition,a similar upregulation of Sox2 and appearance of neuroblasts were observed in the focal ischemic cortex of Macaca mulatta.Our findings demonstrated a transient neurogenic response of Sox2-positive astrocytes in ischemic cortex,which suggests the possibility of inducing neuronal regeneration by amplifying this intrinsic response in the future.
基金funded by the Department of Education of Yunnan Province(No.2021J0244).
文摘Esophageal squamous cell carcinoma(ESCC)is among the most prevalent causes of cancer-related death in patients worldwide.Resistance to immunotherapy and chemotherapy results in worse survival outcomes in ESCC.It is urgent to explore the underlying molecular mechanism of immune evasion and chemoresistance in ESCC.Here,we conducted RNA-sequencing analysis in ten ESCC tissues from cisplatin-based neoadjuvant chemotherapy patients.We found that DMRTA1 was extremely upregulated in the non-pathologic complete response(non-pCR)group.The proliferation rate of esophageal squamous carcinoma cells was markedly decreased after knockdown of DMRTA1 expression,which could increase cisplatin sensitivity in ESCC.Additionally,suppression of DMRTA1 could decrease the immune escape of esophageal squamous carcinoma cells.Further mechanistic studies suggest that DMRTA1 can promote its expression by binding to the promoter of SOX2,which plays important roles in the progression and chemoresistance of ESCC in the form of positive feedback.Therefore,DMRTA1 could be a potential target to suppress immune escape and overcome chemoresistance in ESCC.