Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by...Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by grafting of acrylamide(AAm) with ultraviolet(UV) irradiation in the presence or absence of benzophenone(BP). The effects of BP, irradiation time and monomer concentration on the surface wettability of PEEK were investigated. Characteriza tion of modified PEEK using scanning electron microscopy(SEM), energy-disperse spectrometer(EDS) and water contact angle measurements shows that AAm was successfully grafted on PEEK surface both in presence and absence of BP. With the increase in irradiation time and monomer concentration, contact angles decrease to as low as 30°, demonstrating a significant improvement of surface hydrophilicity. In agreement with the decrease in contact angle, under identical conditions, the nitrogen concentration increases, suggesting the increase in grafting degree of the grafting polymerization. This investigation demonstrates a self-initiation of PEEK due to its BP-like structure in the backbone of the polymer. Though the graft polymerization proceeds more readily in the presence of BP, the self-initiated graft polymerization is clearly observed.展开更多
The accurate understanding of rockburst mechanism poses a global challenge in the field of rock mechanics.Particularly for strain rockburst,achieving self-initiated static-dynamic state transition is a crucial step in...The accurate understanding of rockburst mechanism poses a global challenge in the field of rock mechanics.Particularly for strain rockburst,achieving self-initiated static-dynamic state transition is a crucial step in the formation of catastrophic events.However,the state transition behavior and its impact on rockburst have not received sufficient attention,and are still poorly understood.Therefore,this study specifically focuses on the state transition behavior,aiming to investigate its abrupt transition process and formation mechanism,and triggering effects on rockburst.To facilitate the study,a novel burst rock-surrounding rock combined laboratory test model is proposed and its effectiveness is validated through experiment verification.Subsequently,corresponding numerical models are established using the three-dimensional(3D)discrete element method(DEM),enabling successful simulation of static brittle failure and rockbursts of varying intensities under quasi-static displacement loading conditions.Moreover,through secondary development,comprehensive recording of the mechanical and energy information pertaining to the combined specimen system and its subsystems is achieved.As a result of numerical investigation studies,the elastic rebound dynamic behavior of the surrounding rock was discovered and identified as the key factor triggering rockburst and controlling its intensity.The impact loading on the burst rock,induced by elastic rebound,directly initiates the dynamic processes of rockburst,serving as the direct cause.Additionally,the transient work and energy convergence towards the burst rock resulting from elastic rebound are recognized as the inherent cause of rockburst.Moreover,it has been observed that a larger extent of surrounding rock leads to a stronger elastic rebound,thereby directly contributing to a more intense rockburst.The findings can provide novel theoretical insights for the exploring of rockburst mechanism and the development of monitoring and prevention techniques.展开更多
Since tertiary amines (Cα-H) can be oxidized by peroxides and transition metal cations in high oxidation states into Ca2+ radicals to initiate vinylic polymerizations of methacrylates, Cu2+ and 2-(N,N-dimethylam...Since tertiary amines (Cα-H) can be oxidized by peroxides and transition metal cations in high oxidation states into Ca2+ radicals to initiate vinylic polymerizations of methacrylates, Cu2+ and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) form a polymerizable redox initiating pair, in which DMAEMA serves as an intrinsically reducing inimer. CuSOa-catalyzed aqueous self-initiated radical polymerizations of DMAEMA were successfully performed at ambient temperature via a continuous Cu2+-tertiary amine redox initiation based on catalyst regeneration in the presence of O2. The polymerization kinetics was monitored by gas chromatography and the structure of PDMAEMA was characterized by gel- permeation chromatography, nuclear magnetic resonance spectroscopy, laser light scattering and online intrinsic-viscosity analysis. Both the monomer conversion and the molecular weight of PDMAEMA increase with the reaction while the molecular weight distribution maintains rather broad, as the Cu2+-DMAEMA redox-initiation leads to linear PDMAEMA chains with terminal methacryloxyl moieties, and the Cu2+-PDMAEMA redox-initiation results in branched chains. The branched topology forms and develops only for the high-MW components of the PDMAEMA. Our results provide a facile strategy to prepare branched polymers from such commercially available intrinsically reducing inimers using a negligible concentration of regenerative air-stable catalysts.展开更多
基金Supported by the Scientific and Technological Development Programs of Beijing Municipal Education Commission, China (No.KM201010011004)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China, the 2011 Merit-based Research Funding for Picked Returned Overseas Scholars, Beijing Municipality, ChinaBeijing Technology and Business University Through a Research Project Approved for Undergraduates
文摘Photo-grafting of hydrophilic monomer was used to enhance the hydrophilicity of poly(ether ether ketone) (PEEK) with the aim of extending its applications to biological fields. PEEK sheets were surface modified by grafting of acrylamide(AAm) with ultraviolet(UV) irradiation in the presence or absence of benzophenone(BP). The effects of BP, irradiation time and monomer concentration on the surface wettability of PEEK were investigated. Characteriza tion of modified PEEK using scanning electron microscopy(SEM), energy-disperse spectrometer(EDS) and water contact angle measurements shows that AAm was successfully grafted on PEEK surface both in presence and absence of BP. With the increase in irradiation time and monomer concentration, contact angles decrease to as low as 30°, demonstrating a significant improvement of surface hydrophilicity. In agreement with the decrease in contact angle, under identical conditions, the nitrogen concentration increases, suggesting the increase in grafting degree of the grafting polymerization. This investigation demonstrates a self-initiation of PEEK due to its BP-like structure in the backbone of the polymer. Though the graft polymerization proceeds more readily in the presence of BP, the self-initiated graft polymerization is clearly observed.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20597,and 42142019)the“Unveiling and Commanding”Project of Science and Technology Program of Tibet(Grant No.XZ202303ZY0006G)the Shanghai Peak Plateau Discipline(Class I).
文摘The accurate understanding of rockburst mechanism poses a global challenge in the field of rock mechanics.Particularly for strain rockburst,achieving self-initiated static-dynamic state transition is a crucial step in the formation of catastrophic events.However,the state transition behavior and its impact on rockburst have not received sufficient attention,and are still poorly understood.Therefore,this study specifically focuses on the state transition behavior,aiming to investigate its abrupt transition process and formation mechanism,and triggering effects on rockburst.To facilitate the study,a novel burst rock-surrounding rock combined laboratory test model is proposed and its effectiveness is validated through experiment verification.Subsequently,corresponding numerical models are established using the three-dimensional(3D)discrete element method(DEM),enabling successful simulation of static brittle failure and rockbursts of varying intensities under quasi-static displacement loading conditions.Moreover,through secondary development,comprehensive recording of the mechanical and energy information pertaining to the combined specimen system and its subsystems is achieved.As a result of numerical investigation studies,the elastic rebound dynamic behavior of the surrounding rock was discovered and identified as the key factor triggering rockburst and controlling its intensity.The impact loading on the burst rock,induced by elastic rebound,directly initiates the dynamic processes of rockburst,serving as the direct cause.Additionally,the transient work and energy convergence towards the burst rock resulting from elastic rebound are recognized as the inherent cause of rockburst.Moreover,it has been observed that a larger extent of surrounding rock leads to a stronger elastic rebound,thereby directly contributing to a more intense rockburst.The findings can provide novel theoretical insights for the exploring of rockburst mechanism and the development of monitoring and prevention techniques.
基金financially supported by the National Natural Science Foundation of China(No.20674033)Natural Science Foundation of Jiangsu Province(No.BK2008142)Scientific Research Foundation for the Returned Overseas Chinese Scholars(State Education Ministry)
文摘Since tertiary amines (Cα-H) can be oxidized by peroxides and transition metal cations in high oxidation states into Ca2+ radicals to initiate vinylic polymerizations of methacrylates, Cu2+ and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) form a polymerizable redox initiating pair, in which DMAEMA serves as an intrinsically reducing inimer. CuSOa-catalyzed aqueous self-initiated radical polymerizations of DMAEMA were successfully performed at ambient temperature via a continuous Cu2+-tertiary amine redox initiation based on catalyst regeneration in the presence of O2. The polymerization kinetics was monitored by gas chromatography and the structure of PDMAEMA was characterized by gel- permeation chromatography, nuclear magnetic resonance spectroscopy, laser light scattering and online intrinsic-viscosity analysis. Both the monomer conversion and the molecular weight of PDMAEMA increase with the reaction while the molecular weight distribution maintains rather broad, as the Cu2+-DMAEMA redox-initiation leads to linear PDMAEMA chains with terminal methacryloxyl moieties, and the Cu2+-PDMAEMA redox-initiation results in branched chains. The branched topology forms and develops only for the high-MW components of the PDMAEMA. Our results provide a facile strategy to prepare branched polymers from such commercially available intrinsically reducing inimers using a negligible concentration of regenerative air-stable catalysts.