Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Her...Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.展开更多
The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantu...The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.展开更多
Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. Th...Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. The decomposed Ag atoms congregate and form polycrystalline Ag particles. The Ag concentration changes greatly with the total laser energyA absorbed by substrate. Transmission electron microscopy (TEM) observation shows the Ag particles are inlaid in the Si substrate. Auger electron spectrum (AES) shows that the Ag concentration decreases with the increase of the sputtering depth, and there is no oxygen element on the surface of the deposited Ag films.展开更多
InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. ...InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. It is observed that with the decrease of the growth temperature of the superlattice from 895℃ to 855℃, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K-150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.展开更多
Porous SiO_(2)film has been widely studied due to its extensive applications in many fields.This paper presents a newly produced porous SiO_(2)film made by traditional sol-gel method.Bare Si and Si with SiO_(2)buffer ...Porous SiO_(2)film has been widely studied due to its extensive applications in many fields.This paper presents a newly produced porous SiO_(2)film made by traditional sol-gel method.Bare Si and Si with SiO_(2)buffer layer were used as substrate.The SiO_(2)buffer layer was 500 nm in thickness and was grown by thermal oxidization.The structural properties of SiO_(2)aerogel films spincoated on both materials were observed by optical microscope(OM)and scanning electron microscope(SEM).Results reveal that the surface of SiO_(2)aerogel films on bare Si is rough and discontinuous.While flat and smooth surface is observed on sample with SiO_(2)buffer layer.This indicates that by inserting SiO_(2)buffer layer,the structural property of SiO_(2)aerogel film deposited on Si is improved.展开更多
A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabric...A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabrication processes are fully compatible with conventional CMOS process,including salicide technology.The CMOS device,inverter,and CMOS ring oscillator of this structure with normal poly silicon and W/TiN gate electrode are fabricated respectively.Driving current and sub threshold characteristics of CMOS FinFET on Si substrate with actual gate length of 110nm are studied.The inverter operates correctly and minimum per stage delay of 201 stage ring oscillator is 146ps at V d=3V.The result indicates the device is a promising candidate for the application of future VLSI circuit.展开更多
AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlat...AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.展开更多
InGaN nanowires (NWs) are grown on pyramid textured Si substrates by stationary plasma-assisted molecular beam epitaxy (PA-MBE). The incidence angles of the highly directional source beams vary for different pyramid f...InGaN nanowires (NWs) are grown on pyramid textured Si substrates by stationary plasma-assisted molecular beam epitaxy (PA-MBE). The incidence angles of the highly directional source beams vary for different pyramid facets, inducing a distinct inter-facet modulation of the In content of the InGaN NWs, which is verified by spatial element distribution analysis. The resulting multi-wavelength emission is confirmed by photoluminescence (PL) and cathodoluminescence (CL). Pure GaN phase formation dominates on certain facets, which is attributed to extreme local growth conditions, such as low active N flux. On the same facets, InGaN NWs exhibit a morphology change close to the pyramid ridge, indicating inter-facet atom migration. This cross-talk effect due to inter-facet atom migration is verified by a decrease of the inter-facet In content modulation amplitude with shrinking pyramid size. A detailed analysis of the In content variation across individual pyramid facets and element distribution line profiles reveals that the cross-talk effect originates mainly from the inter-facet atom migration over the convex pyramid ridge facet boundaries rather than the concave base line facet boundaries. This is understood by first-principles calculations showing that the pyramid baseline facet boundary acts as an energy barrier for atom migration, which is much higher than that of the ridge facet boundary. The influence of the growth temperature on the inter-facet In content modulation is also presented. This work gives deep insight into the composition modulation for the realization of multi-color light-emitting devices based on the monolithic growth of InGaN NWs on pyramid textured Si substrates.展开更多
SILICON carbide, a semiconductor with chemistry inertia, is well suited to fabricate optoelectronic device working at high temperature, high power, high frequency, and in high radiation environments. Among the hundred...SILICON carbide, a semiconductor with chemistry inertia, is well suited to fabricate optoelectronic device working at high temperature, high power, high frequency, and in high radiation environments. Among the hundreds of SiC polytypes, 4H-SiC, with a wider bandgap, a higher and much less anisotropic electron mobility than 6H-SiC, has aroused much attention .展开更多
High-density horizontal InAs nanowire transistors are fabricated on the interdigital silicon-on-insulator substrate.Hexagonal InAs nanowires are uniformly grown between face-to-face(111) vertical sidewalls of neighb...High-density horizontal InAs nanowire transistors are fabricated on the interdigital silicon-on-insulator substrate.Hexagonal InAs nanowires are uniformly grown between face-to-face(111) vertical sidewalls of neighboring Si fingers by metal–organic chemical vapor deposition. The density of InAs nanowires is high up to 32 per group of silicon fingers,namely an average of 4 nanowires per micrometer. The electrical characteristics with a higher on/off current ratio of 2×10~5are obtained at room temperature. The silicon-based horizontal InAs nanowire transistors are very promising for future high-performance circuits.展开更多
Expermental results of the preparation of YBaCuO superconductor thin film on Si(100) substrate by the method of ion beam sputtering deposition is presented.A ZrO_2 buffer layer was applied to Si(100)substrate,and was ...Expermental results of the preparation of YBaCuO superconductor thin film on Si(100) substrate by the method of ion beam sputtering deposition is presented.A ZrO_2 buffer layer was applied to Si(100)substrate,and was found to play an important role in resisting the diffusion of Si toward the film.The thin film is mainly a 123 phase with strong c-axis prefer- red orientation.The onset transition temperature of the film is 100 K and the final transition temperature 78 K.展开更多
Crack-free Ga N/In Ga N multiple quantum wells(MQWs) light-emitting diodes(LEDs) are transferred from Si substrate onto electroplating Cu submount with embedded wide p-electrodes. The vertical-conducting n-side-up...Crack-free Ga N/In Ga N multiple quantum wells(MQWs) light-emitting diodes(LEDs) are transferred from Si substrate onto electroplating Cu submount with embedded wide p-electrodes. The vertical-conducting n-side-up configuration of the LED is achieved by using the through-hole structure. The widened embedded p-electrode covers almost the whole transparent conductive layer(TCL), which could not be applied in the conventional p-side-up LEDs due to the electrodeshading effect. Therefore, the widened p-electrode improves the current spreading property and the uniformity of luminescence. The working voltage and series resistance are thereby reduced. The light output of embedded wide p-electrode LEDs on Cu is enhanced by 147% at a driving current of 350 m A, in comparison to conventional LEDs on Si.展开更多
A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes(LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. ...A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes(LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. In comparison with polar structure LEDs, the semi-polar structure exhibits a higher concentration of electrons and holes and radiative recombination rate, and its reduced built-in polarization field weakens the extent of band bending which causes the shift of peak emission wavelength. So the efficiency droop of semi-polar InGaN/GaN LEDs declines obviously and the optical power is significantly improved. In comparison with non-polar structure LEDs, although the concentration of holes and electrons as well as the radiative recombination rate of the semi-polar structure are better in the last two quantum wells(QWs) approaching the p-Ga N side, the uniformity of distribution of carriers and radiative recombination rate for the nonpolar structure is better. So the theoretical analysis indicates that the removal of the internal polarization field in the MQWs active regions for non-polar structure LEDs contributes to the uniform distribution of electrons and holes, and decreases the electron leakage. Thus it enhances the radiative recombination rate, and further improves the IQEs and optical powers, and shows the best photoelectric properties among these three structures.展开更多
In this work, we succeeded in the preparation of LiNb 1- x Ta x O 3 films on Si(111) substrates by means of sol gel process, and the usual sol gel process for the preparation of LiNbO 3 and LiTaO 3 films on Si substra...In this work, we succeeded in the preparation of LiNb 1- x Ta x O 3 films on Si(111) substrates by means of sol gel process, and the usual sol gel process for the preparation of LiNbO 3 and LiTaO 3 films on Si substrates was improved by adding a 33% aqueous solution of CH 3CH 2OH to the mixed sols of LiNb(OCH 2CH 3) 6 and LiTa(OCH 2CH 3) 6 . The crystallization behavior of LiNb 1- x Ta x O 3 films on Si(111) substrates has been studied. Highly c axis oriented LiNb 1- x Ta x O 3 films have been obtained within the tantalum composition range of \{0< x <0 33\}. Some factors such as the hydrogen termination of the silicon surface, the RTP annealing process that provides the unidirectional heat flow and the preheating temperature are discussed to analyze the crystallization of the c axis oriented films.展开更多
GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared a...GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.展开更多
Highly oriented MgO(111)and MgO(100)thin films have been deposited on Si(111)and Si(100)substrates by using Low Pressure MOCVD(LPMOCVD).Magnesium 2,4-pentanedionate was used as the source ma- terial.The films have a v...Highly oriented MgO(111)and MgO(100)thin films have been deposited on Si(111)and Si(100)substrates by using Low Pressure MOCVD(LPMOCVD).Magnesium 2,4-pentanedionate was used as the source ma- terial.The films have a very smooth surface morphology and optical transparency with an index of refraction of 1.71(632.8 nm).Typical growth rate of the films is 1.0 μm/h.The data of X-ray diffraction analysis indi- cate that the films are fully textured with(111)and(100)orientation perpendicular to the substrate surface respectively.The main parameters having influence on the deposition are the substrate temperature,the total pressure in the reaction chamber,the reaction gases and its flowrate.展开更多
We present the growth of CaN epilayer on Si (111) substrate with a single A1GaN interlayer sandwiched between the GaN epilayer and A1N buffer layer by using the metalorganic chemical vapour deposition. The influence...We present the growth of CaN epilayer on Si (111) substrate with a single A1GaN interlayer sandwiched between the GaN epilayer and A1N buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an A1N buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.展开更多
High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single A1GaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical va...High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single A1GaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlCaN interlayer on the structural properties of the resulting CaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AIGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.展开更多
Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrea...Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.展开更多
The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting...The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si(100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells(MQWs) with different well widths are grown on semi-polar(1■01)planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission.展开更多
基金supported by National 863 Program 2011AA050518the Natural Science Foundation of China(Grant Nos.11174197,11574203,and 61234005)
文摘Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434010,11574356 and 11504415the Funds from the Royal Society,the Defense Science Technology Laboratory and UK Engineering and Physics Research Council
文摘The first operation of an electrically pumped 1.3μm InAs/GaAs quantum-dot laser was previously reported epitaxially grown on Si (100) substrate. Here the direct epitaxial growth condition of 1.3μm InAs/OaAs quantum on a Si substrate is further investigated using atomic force microscopy, etch pit density and temperature-dependent photoluminescence (PL) measurements. The PL for Si-based InAs/GaAs quantum dots appears to be very sensitive to the initial OaAs nucleation temperature and thickness with strongest room-temperature emission at 40000 (17Onto nucleation layer thickness), due to the lower density of defects generated under this growth condition, and stronger carrier confinement within the quantum dots.
基金This work was financially supported by the special funds for the major basic research projects(No.G2000067205-4).
文摘Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgNO3 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. The decomposed Ag atoms congregate and form polycrystalline Ag particles. The Ag concentration changes greatly with the total laser energyA absorbed by substrate. Transmission electron microscopy (TEM) observation shows the Ag particles are inlaid in the Si substrate. Auger electron spectrum (AES) shows that the Ag concentration decreases with the increase of the sputtering depth, and there is no oxygen element on the surface of the deposited Ag films.
基金Supported by the National Natural Science Foundation of China under Grant No 61334001the National Key Research and Development Program of China under Grant Nos 2016YFB0400600,2016YFB0400601 and 2016YFB0400100+1 种基金the National Science Foundation for Young Scientists of China under Grant No 21405076the Fund for Less Developed Regions of the National Natural Science Foundation of China under Grant No 11364034
文摘InGaN-based green light-emitting diodes (LEDs) with different growth temperatures of superlattice grown on Si (111) substrates are investigated by temperature-dependent electroluminescence between 100 K and 350K. It is observed that with the decrease of the growth temperature of the superlattice from 895℃ to 855℃, the forward voltage decreases, especially at low temperature. We presume that this is due to the existence of the larger average size of V-shaped pits, which is determined by secondary ion mass spectrometer measurements. Meanwhile, the sample with higher growth temperature of superlattice shows a severer efficiency droop at cryogenic temperatures (about 100 K-150 K). Electron overflow into p-GaN is considered to be the cause of such phenomena, which is relevant to the poorer hole injection into multiple quantum wells and the more reduced effective active volume in the active region.
基金financially supported by the National Natural Science Foundation of China(No.51102037)the Fundamental Research Funds for the Central Universities from UESTC(Nos.ZYGX2010J030 and ZYGX2011J023)。
文摘Porous SiO_(2)film has been widely studied due to its extensive applications in many fields.This paper presents a newly produced porous SiO_(2)film made by traditional sol-gel method.Bare Si and Si with SiO_(2)buffer layer were used as substrate.The SiO_(2)buffer layer was 500 nm in thickness and was grown by thermal oxidization.The structural properties of SiO_(2)aerogel films spincoated on both materials were observed by optical microscope(OM)and scanning electron microscope(SEM).Results reveal that the surface of SiO_(2)aerogel films on bare Si is rough and discontinuous.While flat and smooth surface is observed on sample with SiO_(2)buffer layer.This indicates that by inserting SiO_(2)buffer layer,the structural property of SiO_(2)aerogel film deposited on Si is improved.
文摘A CMOS FinFET fabricated on bulk silicon substrate is demonstrated.Besides owning a FinFET structure similar to the original FinFET on SOI,the device combines a grooved planar MOSFET in the Si substrate and the fabrication processes are fully compatible with conventional CMOS process,including salicide technology.The CMOS device,inverter,and CMOS ring oscillator of this structure with normal poly silicon and W/TiN gate electrode are fabricated respectively.Driving current and sub threshold characteristics of CMOS FinFET on Si substrate with actual gate length of 110nm are studied.The inverter operates correctly and minimum per stage delay of 201 stage ring oscillator is 146ps at V d=3V.The result indicates the device is a promising candidate for the application of future VLSI circuit.
文摘AlN/GaN superlattice buffer is inserted between GaN epitaxiai layer and Si substrate before epitaxiai growth of GaN layer. High-quality and crack-free GaN epitaxiai layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.
基金This work was supported by the Program for Chang Jiang Scholars and Innovative Research Teams in Universities(No.IRT_17R40)Science and Technology Program of Guangzhou(No.2019050001)+1 种基金the Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(No.2017B030301007)MOE International Laboratory for Optical Information Technologies,the 111 Project,and the National Natural Science Foundation of China(No.51907171).
文摘InGaN nanowires (NWs) are grown on pyramid textured Si substrates by stationary plasma-assisted molecular beam epitaxy (PA-MBE). The incidence angles of the highly directional source beams vary for different pyramid facets, inducing a distinct inter-facet modulation of the In content of the InGaN NWs, which is verified by spatial element distribution analysis. The resulting multi-wavelength emission is confirmed by photoluminescence (PL) and cathodoluminescence (CL). Pure GaN phase formation dominates on certain facets, which is attributed to extreme local growth conditions, such as low active N flux. On the same facets, InGaN NWs exhibit a morphology change close to the pyramid ridge, indicating inter-facet atom migration. This cross-talk effect due to inter-facet atom migration is verified by a decrease of the inter-facet In content modulation amplitude with shrinking pyramid size. A detailed analysis of the In content variation across individual pyramid facets and element distribution line profiles reveals that the cross-talk effect originates mainly from the inter-facet atom migration over the convex pyramid ridge facet boundaries rather than the concave base line facet boundaries. This is understood by first-principles calculations showing that the pyramid baseline facet boundary acts as an energy barrier for atom migration, which is much higher than that of the ridge facet boundary. The influence of the growth temperature on the inter-facet In content modulation is also presented. This work gives deep insight into the composition modulation for the realization of multi-color light-emitting devices based on the monolithic growth of InGaN NWs on pyramid textured Si substrates.
文摘SILICON carbide, a semiconductor with chemistry inertia, is well suited to fabricate optoelectronic device working at high temperature, high power, high frequency, and in high radiation environments. Among the hundreds of SiC polytypes, 4H-SiC, with a wider bandgap, a higher and much less anisotropic electron mobility than 6H-SiC, has aroused much attention .
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA02005003)the National Natural Science Foundation of China(Grant Nos.61376096 and 61327813)
文摘High-density horizontal InAs nanowire transistors are fabricated on the interdigital silicon-on-insulator substrate.Hexagonal InAs nanowires are uniformly grown between face-to-face(111) vertical sidewalls of neighboring Si fingers by metal–organic chemical vapor deposition. The density of InAs nanowires is high up to 32 per group of silicon fingers,namely an average of 4 nanowires per micrometer. The electrical characteristics with a higher on/off current ratio of 2×10~5are obtained at room temperature. The silicon-based horizontal InAs nanowire transistors are very promising for future high-performance circuits.
文摘Expermental results of the preparation of YBaCuO superconductor thin film on Si(100) substrate by the method of ion beam sputtering deposition is presented.A ZrO_2 buffer layer was applied to Si(100)substrate,and was found to play an important role in resisting the diffusion of Si toward the film.The thin film is mainly a 123 phase with strong c-axis prefer- red orientation.The onset transition temperature of the film is 100 K and the final transition temperature 78 K.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant Nos.2010CB923201 and 2011CB301903)+1 种基金the Ph.D. Program Foundation of Ministry of Education of China(Grant No.20110171110021)the Foundation of the Key Technologies R&D Program of Guangdong Province,China(Grant No.2010A081002005)
文摘Crack-free Ga N/In Ga N multiple quantum wells(MQWs) light-emitting diodes(LEDs) are transferred from Si substrate onto electroplating Cu submount with embedded wide p-electrodes. The vertical-conducting n-side-up configuration of the LED is achieved by using the through-hole structure. The widened embedded p-electrode covers almost the whole transparent conductive layer(TCL), which could not be applied in the conventional p-side-up LEDs due to the electrodeshading effect. Therefore, the widened p-electrode improves the current spreading property and the uniformity of luminescence. The working voltage and series resistance are thereby reduced. The light output of embedded wide p-electrode LEDs on Cu is enhanced by 147% at a driving current of 350 m A, in comparison to conventional LEDs on Si.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172079)the Science and Technology Program of Guangdong Province,China(Grant Nos.2010B090400456 and 2010A081002002)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.2011J4300018)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(Grant No.IRT13064)
文摘A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes(LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. In comparison with polar structure LEDs, the semi-polar structure exhibits a higher concentration of electrons and holes and radiative recombination rate, and its reduced built-in polarization field weakens the extent of band bending which causes the shift of peak emission wavelength. So the efficiency droop of semi-polar InGaN/GaN LEDs declines obviously and the optical power is significantly improved. In comparison with non-polar structure LEDs, although the concentration of holes and electrons as well as the radiative recombination rate of the semi-polar structure are better in the last two quantum wells(QWs) approaching the p-Ga N side, the uniformity of distribution of carriers and radiative recombination rate for the nonpolar structure is better. So the theoretical analysis indicates that the removal of the internal polarization field in the MQWs active regions for non-polar structure LEDs contributes to the uniform distribution of electrons and holes, and decreases the electron leakage. Thus it enhances the radiative recombination rate, and further improves the IQEs and optical powers, and shows the best photoelectric properties among these three structures.
基金Supported by the National Natural Science Foundation of China(No.2 0 1710 15 )
文摘In this work, we succeeded in the preparation of LiNb 1- x Ta x O 3 films on Si(111) substrates by means of sol gel process, and the usual sol gel process for the preparation of LiNbO 3 and LiTaO 3 films on Si substrates was improved by adding a 33% aqueous solution of CH 3CH 2OH to the mixed sols of LiNb(OCH 2CH 3) 6 and LiTa(OCH 2CH 3) 6 . The crystallization behavior of LiNb 1- x Ta x O 3 films on Si(111) substrates has been studied. Highly c axis oriented LiNb 1- x Ta x O 3 films have been obtained within the tantalum composition range of \{0< x <0 33\}. Some factors such as the hydrogen termination of the silicon surface, the RTP annealing process that provides the unidirectional heat flow and the preheating temperature are discussed to analyze the crystallization of the c axis oriented films.
基金supported by Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant Nos.Z211100007921022 and Z211100004821001)the National Natural Science Foundation of China(Grant Nos.62034008,62074142,62074140,61974162,61904172,61874175,62127807,and U21B2061)+3 种基金Key Research and Development Program of Jiangsu Province(Grant No.BE2021008-1)Beijing Nova Program(Grant No.202093)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43030101)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019115).
文摘GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.
文摘Highly oriented MgO(111)and MgO(100)thin films have been deposited on Si(111)and Si(100)substrates by using Low Pressure MOCVD(LPMOCVD).Magnesium 2,4-pentanedionate was used as the source ma- terial.The films have a very smooth surface morphology and optical transparency with an index of refraction of 1.71(632.8 nm).Typical growth rate of the films is 1.0 μm/h.The data of X-ray diffraction analysis indi- cate that the films are fully textured with(111)and(100)orientation perpendicular to the substrate surface respectively.The main parameters having influence on the deposition are the substrate temperature,the total pressure in the reaction chamber,the reaction gases and its flowrate.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60506001,60476021,60576003,60776047and 60836003)the National Basic Research Program of China (Grant No. 2007CB936700)the Project of Technological Research and Development of Hebei Province,China (Grant No. 07215134)
文摘We present the growth of CaN epilayer on Si (111) substrate with a single A1GaN interlayer sandwiched between the GaN epilayer and A1N buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an A1N buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60506001, 60476021, 60576003, 60776047 and 60836003)the National Basic Research Program of China (Grant No 2007CB936700)Project of Technological Research and Development of Hebei Province (Grant No 07215134)
文摘High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single A1GaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlCaN interlayer on the structural properties of the resulting CaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AIGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.
文摘Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51472229,61422405,and 11574301)the Natural Science Foundation of Tianjin(Grant No.14JCQNJC01000)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2016M600231)
文摘The epitaxial growth of novel GaN-based light-emitting diode(LED) on Si(100) substrate has proved challenging.Here in this work, we investigate a monolithic phosphor-free semi-polar InGaN/GaN near white light-emitting diode, which is formed on a micro-striped Si(100) substrate by metal organic chemical vapor deposition. By controlling the size of micro-stripe, InGaN/GaN multiple quantum wells(MQWs) with different well widths are grown on semi-polar(1■01)planes. Besides, indium-rich quantum dots are observed in InGaN wells by transmission electron microscopy, which is caused by indium phase separation. Due to the different widths of MQWs and indium phase separation, the indium content changes from the center to the side of the micro-stripe. Various indium content provides the wideband emission. This unique property allows the semipolar InGaN/GaN MQWs to emit wideband light, leading to the near white light emission.