期刊文献+
共找到93,691篇文章
< 1 2 250 >
每页显示 20 50 100
Characteristics and main controlling factors of intra-platform shoal thin-layer dolomite reservoirs:A case study of Middle Permian Qixia Formation in Gaoshiti-Moxi area of Sichuan Basin,SW China
1
作者 HE Jiang LIAN Zhihua +5 位作者 LUO Wenjun ZHOU Hui XU Huilin HE Puwei Yang Yi LAN Xuemei 《Petroleum Exploration and Development》 SCIE 2024年第1期69-80,共12页
Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control... Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin. 展开更多
关键词 Middle Permian Qixia Formation intra-platform shoal thin-layer dolomite paleogeomorphology diagenesis Gaoshiti-Moxi area sichuan basin
下载PDF
Differences in and factors controlling organic matter enrichment in the Ziliujing Formation shale in the Sichuan Basin
2
作者 Peng Li Zhong-Bao Liu +4 位作者 He Bi Tao Jiang Rui-Kang Bian Peng-Wei Wang Xiao-Yu Shang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期77-86,共10页
Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two se... Lacustrine shale oil and gas are important fields for unconventional exploration and development in China,and organic-rich shale deposition lays down the critical foundation for hydrocarbon generation.There are two sets of shale,the Dongyuemiao and Da’anzhai Members,in the Ziliujing Formation in the Sichuan Basin.To identify the differential enrichment characteristics of organic matter and clarify its controlling factors,geochemical analyses of organic and inorganic geochemical analyses were performed.The results showed that the total organic carbon content of the Dongyuemiao shale(1.36%)is slightly higher than that of the Da’anzhai shale(0.95%).The enrichment of organic matter in the two shales resulted from the comprehensive controls of paleoproductivity,paleoenvironment,and terrigenous input,but different factors have different effects.In addition,driven by climate,the change in the sulfate concentration in the bottom water further led to the different intensities of bacterial sulfate reduction in early diagenesis.This made a great difference regarding organic matter accumulation in the two members.In general,climate may have played a dominant role in organic matter enrichment in the two sets of shale. 展开更多
关键词 Lacustrine shale Ziliujing Formation sichuan basin Enrichment mechanism of organic matter
下载PDF
Episodic hydrothermal alteration on Middle Permian carbonate reservoirs and its geological significance in southwestern Sichuan Basin,SW China
3
作者 FENG Mingyou SHANG Junxin +5 位作者 SHEN Anjiang WEN Long WANG Xingzhi XU Liang LIANG Feng LIU Xiaohong 《Petroleum Exploration and Development》 SCIE 2024年第1期81-96,共16页
To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The... To analyze the episodic alteration of Middle Permian carbonate reservoirs by complex hydrothermal fluid in southwestern Sichuan Basin,petrology,geochemistry,fluid inclusion and U-Pb dating researches are conducted.The fractures and vugs of Middle Permian Qixia–Maokou formations are filled with multi-stage medium-coarse saddle dolomites and associated hydrothermal minerals,which indicates that the early limestone/dolomite episodic alteration was caused by the large-scale,high-temperature,deep magnesium-rich brine along flowing channels such as basement faults or associated fractures under the tectonic compression and napping during the Indosinian.The time of magnesium-rich hydrothermal activity was from the Middle Triassic to the Late Triassic.The siliceous and calcite fillings were triggered by hydrothermal alteration in the Middle and Late Yanshanian Movement and Himalayan Movement.Hydrothermal dolomitization is controlled by fault,hydrothermal property,flowing channel and surrounding rock lithology,which occur as equilibrium effect of porosity and permeability.The thick massive grainstone/dolomites were mainly altered by modification such as hydrothermal dolomitization/recrystallization,brecciation and fracture-vugs filling.Early thin-medium packstones were mainly altered by dissolution and infilling of fracturing,bedding dolomitization,dissolution and associated mineral fillings.The dissolved vugs and fractures are the main reservoir space under hydrothermal conditions,and the connection of dissolved vugs and network fractures is favorable for forming high-quality dolomite reservoir.Hydrothermal dolomite reservoirs are developed within a range of 1 km near faults,with a thickness of 30–60 m.Hydrothermal dolomite reservoirs with local connected pore/vugs and fractures have exploration potential. 展开更多
关键词 sichuan basin PERMIAN Middle Permian Qixia Formation Middle Permian Maokou Formation hydrothermal fluid hydrothermal dissolution DOLOMITE
下载PDF
Enlightenment of calcite veins in deep Ordovician Wufeng-Silurian Longmaxi shales fractures to migration and enrichment of shale gas in southern Sichuan Basin, SW China
4
作者 CUI Yue LI Xizhe +5 位作者 GUO Wei LIN Wei HU Yong HAN Lingling QIAN Chao ZHAO Jianming 《Petroleum Exploration and Development》 SCIE 2023年第6期1374-1385,共12页
The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through ... The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher. 展开更多
关键词 sichuan basin deep formation in southern sichuan basin Ordovician Wufeng Formation Silurian Longmaxi Formation fracture calcite vein fluid inclusion shale gas enrichment model
下载PDF
Microfacies types and distribution of epicontinental shale: A case study of the Wufeng–Longmaxi shale in southern Sichuan Basin, China
5
作者 WANG Hongyan SHI Zhensheng +4 位作者 SUN Shasha ZHAO Qun ZHOU Tianqi CHENG Feng BAI Wenhua 《Petroleum Exploration and Development》 2023年第1期57-71,共15页
For black shales,laminae and bedding are hard to identify,grain size is difficult to measure,and trace fossils do not exist.Taking the Ordovician Wufeng–Silurian Longmaxi shale in southern Sichuan Basin,China,as an e... For black shales,laminae and bedding are hard to identify,grain size is difficult to measure,and trace fossils do not exist.Taking the Ordovician Wufeng–Silurian Longmaxi shale in southern Sichuan Basin,China,as an example,the types,characteristics and models of microfacies in epicontinental shale are analyzed by means of full-scale observation of large thin sections,argon-ion polishing field emission-scanning electron microscopy(FE-SEM),and kerogen microscopy.The epicontinental sea develops delta,tidal flat and shelf facies,with black shale found in microfacies such as the underwater distributary channel and interdistributary bay under delta front facies,the calcareous and clayey flats under intertidal flat facies,the calcareous and clayey shelfs under shallow shelf facies,the deep slope,deep plain and deep depression under deep shelf facies,and the overflow under gravity flow facies.Basinward,silty lamina decreases and clayey lamina increases,the grain size changes from coarse silt to fine mud,the silica content increases from about 20%to above 55%,the carbonate and clay minerals content decreases from above 40%to around 10%,and the kerogen type changes from type II2 to type II1 and type I.Provenance and topography dominate the types and distribution of shale microfacies.The underwater distributary channel,interdistributary bay,clayey flat,clayey shelf,and overflow microfacies are developed in areas with sufficient sediment supply.The calcareous flat and calcareous shelf are developed in areas with insufficient sediment supply.The deep shelf shale area is divided into deep slope,deep plain,and deep depression microfacies as a result of three breaks.The formation of epicontinental shale with different microfacies is closely related to the tectonic setting,paleoclimate,and sea level rise.The relatively active tectonic setting increases the supply of terrigenous clasts,forming muddy water fine-grained sediment.The warm and humid paleoclimate is conducive to the enrichment of organic matter.The rapid sea level rise is helpful to the widespread black shale. 展开更多
关键词 shale gas SHALE MICROFACIES sedimentary model epicontinental deep shelf Wufeng Formation Longmaxi Formation southern sichuan basin sichuan basin
下载PDF
Petroleum geology of marl in Triassic Leikoupo Formation and discovery significance of Well Chongtan1 in central Sichuan Basin,SW China
6
作者 WANG Zecheng XIN Yongguang +11 位作者 XIE Wuren WEN Long ZHANG Hao XIE Zengye ZHANG Jianyong TIAN Han LI Wenzheng FU Xiaodong SUN Haofei WANG Xiaofang HU Guoyi ZHANG Yu 《Petroleum Exploration and Development》 SCIE 2023年第5期1092-1104,共13页
In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of... In 2022,the risk exploration well Chongtan1(CT1)in the Sichuan Basin revealed commercial oil and gas flow during test in a new zone–the marl of the second submember of the third member of Leikoupo Formation(Lei-32)of Middle Triassic,recording a significant discovery.However,the hydrocarbon accumulation in marl remains unclear,which restricts the selection and deployment of exploration area.Focusing on Well CT1,the hydrocarbon accumulation characteristics of Lei-32 marl are analyzed to clarify the potential zones for exploration.The following findings are obtained.First,according to the geochemical analysis of petroleum and source rocks,oil and gas in the Lei-32 marl of Well CT1 are originated from the same marl.The marl acts as both source rock and reservoir rock.Second,the Lei-32 marl in central Sichuan Basin is of lagoonal facies,with a thickness of 40–130 m,an area of about 40000 km^(2),a hydrocarbon generation intensity of(4–12)×10^(8) m^(3)/km^(2),and an estimated quantity of generated hydrocarbons of 25×10^(12) m^(3).Third,the lagoonal marl reservoirs are widely distributed in central Sichuan Basin.Typically,in Xichong–Yilong,Ziyang–Jianyang and Moxi South,the reservoirs are 20–60 m thick and cover an area of 7500 km^(2).Fourth,hydrocarbons in the lagoonal marl are generated and stored in the Lei-32 marl,which means that marl serves as both source rock and reservoir rock.They represent a new type of unconventional resource,which is worthy of exploring.Fifth,based on the interpretation of 2D and 3D seismic data from central Sichuan Basin,Xichong and Suining are defined as favorable prospects with estimated resources of(2000–3000)×10^(8) m^(3). 展开更多
关键词 sichuan basin central sichuan basin Triassic Leikoupo Formation lagoonal marl source-reservoir integration marine unconventional oil and gas
下载PDF
Complex genesis of multiperiod fractures in the Middle Triassic Leikoupo Formation in the Pengzhou gas field, western Sichuan Basin, China 被引量:1
7
作者 Xiao-Fei Hu Hu-Cheng Deng +2 位作者 Jian-Hua He Zhong-Min Shen Xian-Feng Peng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期161-176,共16页
The cumulative expression of multistage deformation is complex multiperiod fractures,which are commonly seen in tectonic zones.The Middle Triassic Leikoupo Formation in the western Sichuan Basin Depression,China,is a ... The cumulative expression of multistage deformation is complex multiperiod fractures,which are commonly seen in tectonic zones.The Middle Triassic Leikoupo Formation in the western Sichuan Basin Depression,China,is a typical marine carbonate reservoir with natural fractures caused mainly by tectonic movements.According to outcrops,drill cores,image logging,and fluid inclusions,the fracture characteristics,types of natural fractures,and interactions of fractures are determined.In total,419 natural fractures in 493.2 m of cores from 7 wells are investigated,which are mainly shear and tensile fractures with a small number of weathering generated fractures.Meanwhile,the results of the stable isotope analysis of δ13C and δ18O,as well as the flow fluid inclusion data,reveal four tectonic periods of fractures with different occurrences.Based on the history of regional tectonic evolution,indicating one period of weathering fractures ascribable to stratal uplift and three periods of structural fractures related to the sequential tectonic movements of the Longmenshan fault belt.By analyzing the interaction relationships of fractures,three types of fracture interaction relationships are observed:cutting,restraining,and overlapping.The four stages fractures are chronologically assigned to(1)the early Indosinian N-S trending compression,(2)the late Indosinian NW-SE compression,(3)the middle Yanshanian NE-SE compression,and(4)the early Himalayan E-W compression.The influence of natural fractures on gas migration and well production in marine carbonates is discussed,and indicates that tectonic fractures could provide seepage channels for gas migration and accumulation from near or distant hydrocarbon source rocks into the Middle Triassic Leikoupo Formation.This study utilizes a pragmatic approach for understanding the fracture genesis mechanism in oil and gas field with multiperiod fractures. 展开更多
关键词 Multiperiod fractures Interaction relationships Genesis mechanism Gas migration Leikoupo formation sichuan basin
下载PDF
Formation and evolution of the strike-slip faults in the central Sichuan Basin, SW China 被引量:1
8
作者 MA Bingshan LIANG Han +7 位作者 WU Guanghui TANG Qingsong TIAN Weizhen ZHANG Chen YANG Shuai ZHONG Yuan ZHANG Xuan ZHANG Zili 《Petroleum Exploration and Development》 SCIE 2023年第2期373-387,共15页
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem... Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds. 展开更多
关键词 strike-slip fault fault timing fault evolution seismic-geological analysis U-Pb dating faulting mechanism cra-tonic sichuan basin
下载PDF
Theory,technology and practice of shale gas three-dimensional development:A case study of Fuling shale gas field in Sichuan Basin,SW China 被引量:1
9
作者 SUN Huanquan CAI Xunyu +5 位作者 HU Degao LU Zhiyong ZHAO Peirong ZHENG Aiwei LI Jiqing WANG Haitao 《Petroleum Exploration and Development》 SCIE 2023年第3期651-664,共14页
In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is dif... In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field. 展开更多
关键词 shale gas three-dimensional development Fuling shale gas field sichuan basin fine reservoir description precision fracturing recoveryfactor
下载PDF
Geological characteristics of the southern segment of the Late Sinian–Early Cambrian Deyang-Anyue rift trough in Sichuan Basin, SW China 被引量:1
10
作者 LI Rong WANG Yongxiao +4 位作者 WANG Zecheng XIE Wuren LI Wenzheng GU Mingfeng LIANG Zirui 《Petroleum Exploration and Development》 SCIE 2023年第2期321-333,共13页
Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue... Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue rift trough in the Sichuan Basin are analyzed. First, the strata in the southern segment are complete. The first to second members of Dengying Formation(Deng 1 + Deng 2) are found with relatively stable thickness(400–550 m), and the third to fourth members(Deng 3+ Deng 4) show great thickness difference between the marginal trough and the inner trough, which is up to 250 m. The Cambrian Maidiping Formation and Qiongzhusi Formation in southern Sichuan Basin are relatively thin, with the thickness changing greatly and frequently. Second, the Deyang–Anyue rift trough extended southward during the Deng 4 period, affecting southern Sichuan Basin. Compared to the middle and northern segments of the rift trough, the southern segment is generally wide, gentle and shallow, with multiple steps, and alternating uplifts and sags, which are distributed in finger shape. Third, the Deng 1 + Deng 2 in southern Sichuan Basin records the dominance of carbonate platform and unobvious sedimentary differentiation, and the Deng 4 exhibits obvious sedimentary differentiation, namely, basin–slope–secondary slope–slope–secondary slope–platform margin–restricted platform, from the inner trough to the marginal trough. Fourth, the rift trough in southern Sichuan Basin has evolved in four stages: stabilization of Deng 1–Deng 2, initialization of Deng 3–Deng 4, filling of Maidiping–Qiongzhusi, and extinction of Canglangpu Formation. 展开更多
关键词 Deyang-Anyue rift trough geological characteristics secondary slope development and evolution Cambrian Maidiping Formation Cambrian Qiongzhusi Formation Sinian Dengying Formation sichuan basin
下载PDF
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:1
11
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 sichuan basin Longmaxi Formation deep shale gas POROSITY PERMEABILITY rock mechanics high temperature and high pressure triaxial compression
下载PDF
Wind-dispersed seeds blur phylogeographic breaks:The complex evolutionary history of Populus lasiocarpa around the Sichuan Basin
12
作者 Xue Li Markus Ruhsam +5 位作者 Yi Wang Hong-Ying Zhang Xiao-Yan Fan Lei Zhang Jing Wang Kang-Shan Mao 《Plant Diversity》 SCIE CAS CSCD 2023年第2期156-168,共13页
The strength of phylogeographic breaks can vary among species in the same area despite being subject to the same geological and climate history due to differences in biological traits.Several important phylogeographic... The strength of phylogeographic breaks can vary among species in the same area despite being subject to the same geological and climate history due to differences in biological traits.Several important phylogeographic breaks exist around the Sichuan Basin in Southwest China but few studies have focused on wind-dispersed plants.Here,we investigated the phylogeographic patterns and the evolutionary history of Populus lasiocarpa,a wind-pollinated and wind-dispersed tree species with a circum-Sichuan Basin distribution in southwest China.We sequenced and analyzed three plastid DNA fragments(ptDNA) and eight nuclear microsatellites(nSSRs) of 265 individuals of P.lasiocarpa from 21 populations spanning the entire distribution range.Distribution patterns based on nSSR data revealed that there are three genetic groups in P.lasiocarpa.This is consistent with the three phylogeographic breaks(Sichuan Basin,the Kaiyong Line and the 105°E line),where the Sichuan basin acts as the main barrier to gene flow between western and eastern groups.However,the distribution pattern based on ptDNA haplotypes poorly matched the phylogeographic breaks,and wind-dispersed seeds may be one of the main contributing factors.Species distribution modelling suggested a larger potential distribution in the last glacial maximum with a severe bottleneck during the last interglacial.A DIYABC model also suggested a population contraction and expansion for both western and eastern lineages.These results indicate that biological traits are likely to affect the evolutionary history of plants,and that nuclear molecular markers,which experience higher levels of gene flow,might be better indicators of phylogeographic breaks. 展开更多
关键词 PHYLOGEOGRAPHY sichuan basin Populus lasiocarpa Kaiyong line Demographic history
下载PDF
Natural gas characteristics and gas-source comparisons of the Lower Triassic Feixianguan Formation,Eastern Sichuan Basin,China
13
作者 Zi-Yun Zheng Yin-Hui Zuo +5 位作者 Hua-Guo Wen De-Ming Li Yang Luo Jia-Zhen Zhang Mei-Hua Yang Jian-Cheng Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1458-1470,共13页
There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Fe... There is great controversy regarding the origin and source of natural gas in the Lower Triassic Feix-ianguan Formation in the Eastern Sichuan Basin.This seriously restricts the study of natural gas dy-namics in the Feixianguan Formation and thus hampers natural gas exploration in the region,so further study is urgently required.Using experimental tests of natural gas composition,stable isotopes,and noble gas isotopes with gas chromatography(GC)and mass spectrometry(MS)studies of source rock and reservoir asphalt saturated hydrocarbons,the natural gas geochemical characteristics,the genetic identification and a gas-source comparison of the Feixianguan Formation were studied.Then,con-strained by the thermal history,the histories of gas generation and expulsion were restored by basin simulation technology.Finally,a gas accumulation model was established for the Feixianguan Formation.The results showed that(1)the H_(2)S-rich and H2S-poor gas reservoirs of the Feixianguan Formation are distributed on the east and west sides of the Kaijiang-Liangping trough in the Eastern Sichuan Basin,respectively.The carbon and hydrogen isotope compositions of the natural gas in the gas reservoirs are generally heavy and have typical characteristics of high-maturity dry gas reservoirs.(2)The natural gas of the Feixianguan Formation is organic thermogenic gas,which is mainly oil-type gas generated by the secondary cracking of crude oil.The gas-generating parent material is mainly type II kerogen.(3)The natural gas of the Feixianguan Formation in the Eastern Sichuan Basin was mainly generated by argil-laceous source rocks of the Upper Permian Longtan Formation.(4)Natural gas accumulation occurred as follows:the paleo-structure heights were filled with crude oil in the Early Jurassic,and paleo-oil res-ervoirs were formed in the Feixianguan Formation;during the Middle-Late Jurassic,the paleo-oil res-ervoirs were cracked when the reservoir temperatures rose above 160 C,and paleo-gas reservoirs were formed.Since the end of the Late Jurassic,the paleo-gas reservoirs have been adjusted and reformed to form the present-day natural gas reservoirs.These results provide a basis for studying natural gas accumulation dynamics of the Feixianguan Formation in the Eastern Sichuan Basin. 展开更多
关键词 Eastern sichuan basin Feixianguan Formation Natural gas origin Gas-source comparison Longtan Formation
下载PDF
Geochemical Characteristics of the Upper Permian Longtan Formation from Northeastern Sichuan Basin:Implications for the Depositional Environment and Organic Matter Enrichment
14
作者 XIAO Wei ZHANG Bing +4 位作者 YANG Kai WANG Yan WEN Siyu MA Kai CAO Gaoquan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1196-1213,共18页
A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At presen... A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At present,most studies on this set of formations have focused on the reservoir characteristics and reservoir formation mechanism of the shales,and basic studies on the palaeoenvironment and organic matter(OM)enrichment mechanism have not been fully carried out.In this paper,we recovered the sedimentary palaeoenvironment by mineralogical,elemental geochemical and organic geochemical analyses,and explored the enrichment mechanism of OM under the constraints of palaeoenvironmental evolution.The shales can be divided into two stages of sedimentary evolution:compared with the shales of the Lower Longtan Formation,the shales of the Upper Longtan Formation are relatively rich in quartz,poor in clay and carbonate minerals,and the OM type changes from typeⅢto typeⅡ_(2).The depositional environment has undergone a change from sea level rise,from warm and wet climate to dry and cold climate,and from oxygen-poor condition restricted to open reduction environment;the land source input has decreased,the siliceous mineral content has increased,the biological productivity has improved,and the deposition rate has changed from high to low.A depositional model was established for the shales of the Longtan Formation,reflecting the differential reservoir formation pattern of organic matter.For the Lower Longtan Formation shales,the most important factors controlling OM content are terrestrial source input and deposition rate,followed by paleoclimate and paleooxygen conditions.For the Upper Longtan Formation shales,the most important controlling factor is paleo-productivity,followed by sedimentation rate.The depositional model constructed for the Upper and Lower Longtan Formation shales can reproduce the enrichment of organic matter and provide a basis for later exploration and development. 展开更多
关键词 geochemical characteristics sedimentary environment organic matter accumulation upper Permian northeastern sichuan basin
下载PDF
Control of strike-slip faults on Sinian carbonate reservoirs in Anyue gas field, Sichuan Basin, SW China
15
作者 HE Xiao TANG Qingsong +5 位作者 WU Guanghui LI Fei TIAN Weizhen LUO Wenjun MA Bingshan SU Chen 《Petroleum Exploration and Development》 SCIE 2023年第6期1282-1294,共13页
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn... The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs. 展开更多
关键词 pre-Cambrian strike-slip fault carbonate reservoir FRACTURING controlling factor sichuan basin
下载PDF
Sequence structure, sedimentary evolution and their controlling factors of the Jurassic Lianggaoshan Formation in the East Sichuan Basin, SW China
16
作者 CHENG Dawei ZHANG Zhijie +6 位作者 HONG Haitao ZHANG Shaomin QIN Chunyu YUAN Xuanjun ZHANG Bin ZHOU Chuanmin DENG Qingjie 《Petroleum Exploration and Development》 SCIE 2023年第2期293-305,共13页
Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the ... Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance. 展开更多
关键词 sichuan basin JURASSIC Lianggaoshan Formation heavy mineral assemblage zircon U-Pb dating lake basin migration provenance analysis basin-mountain evolution
下载PDF
Petrophysical properties and their influencing factors of carbonates in the fourth member of Sinian Dengying Formation, Sichuan Basin, SW China
17
作者 WANG Jiaqing DENG Jixin +2 位作者 LIU Zhonghua YAN Longlong XIA Hui 《Petroleum Exploration and Development》 SCIE 2023年第6期1358-1373,共16页
Based on the measurements of petrological, petrophysical and elastic properties of the samples of different sedimentary facies in the fourth member of Sinian Dengying Formation (Deng 4 Member) in the Sichuan Basin, th... Based on the measurements of petrological, petrophysical and elastic properties of the samples of different sedimentary facies in the fourth member of Sinian Dengying Formation (Deng 4 Member) in the Sichuan Basin, the diagenetic processes of reservoirs of different sedimentary facies and their controls on the petrophysical properties were discussed. The results show that cracks and mineral composition jointly control the petrophysical properties, and both are significantly influenced by sedimentary environment and diagenesis. The microbial dolomite of mound-shoal facies mainly experienced multi-stage dolomitization, penecontemporaneous dissolution, tectonic rupture and hydrothermal/organic acid dissolution processes, giving rise to cracks and dissolved pores. The grannular dolomite of inter-mound-shoal bottomland or dolomitic lagoon facies mainly underwent mechanical compaction, burial dolomitization and tectonic-hydrothermal action, creating cracks and intercrystalline pores. The diagenesis related to crack development increases the pressure- and saturation-dependent effects of samples, leading to significant decrease in the compressional wave impedance and Poisson's ratio. Dolomitization changes the properties of mineral particles, resulting in a Poisson's ratio close to dolomite. The muddy, siliceous and calcareous sediments in the low-energy environment lead to the decrease of impedance and the differential change of Poisson's ratio (significantly increased or decreased). The samples with both cracks and dissolved pores show high P-wave velocity dispersion characteristics, and the P-wave velocity dispersion of samples with only fractures or pores is the lowest. 展开更多
关键词 sichuan basin Sinian Dengying Formation carbonate rock sedimentary environment DIAGENESIS petrophysical properties wave impedance Poisson’s ratio P-wave velocity dispersion
下载PDF
Accumulation and exploration enlightenment of shallow normal-pressure shale gas in southeastern Sichuan Basin, SW China
18
作者 YUN Lu 《Petroleum Exploration and Development》 SCIE 2023年第6期1308-1319,共12页
Based on the drilling, logging, experimental and testing data of Well PD1, a shallow normal-pressure shale gas well in the Laochangping anticline in southeastern Sichuan Basin, the shallow shale gas reservoirs of the ... Based on the drilling, logging, experimental and testing data of Well PD1, a shallow normal-pressure shale gas well in the Laochangping anticline in southeastern Sichuan Basin, the shallow shale gas reservoirs of the Ordovician Wufeng Formation to Silurian Longmaxi Formation (Wufeng-Longmaxi) were investigated in terms of geological characteristics, occurrence mechanism, and adsorption-desorption characteristics, to reveal the enrichment laws and high-yield mechanism of shallow normal-pressure shale gas in complex structure areas. First, the shallow shale gas reservoirs are similar to the medium-deep shale gas reservoirs in static indicators such as high-quality shale thickness, geochemistry, physical properties and mineral composition, but the former is geologically characterized by low formation pressure coefficient, low gas content, high proportion of adsorbed gas, low in-situ stress, and big difference between principal stresses. Second, shallow shales in the complex structure areas have the gas occurrence characteristics including low total gas content (1.1-4.8 m3/t), high adsorbed gas content (2.5-2.8 m3/t), low sensitive desorption pressure (1.7-2.5 MPa), and good self-sealing. Third, the adsorbed gas enrichment of shales is mainly controlled by organic matter abundance, formation temperature and formation pressure: the higher the organic matter abundance and formation pressure, the lower the formation temperature and the higher the adsorption capacity, which is more beneficial for the adsorbed gas occurrence. Fourth, the shallow normal-pressure shale gas corresponds to low sensitive desorption pressure. The adsorbed gas can be rapidly desorbed and recovered when the flowing pressure is reduced below the sensitive desorption pressure. Fifth, the exploration breakthrough of Well PD1 demonstrates that the shallow complex structure areas with adsorbed gas in dominance can form large-scale shale reservoirs, and confirms the good exploration potential of shallow normal-pressure shale gas in the margin of the Sichuan Basin. 展开更多
关键词 shallow normal-pressure shale gas adsorbed gas ADSORPTION-DESORPTION sensitive desorption pressure Ordovician Wufeng-Silurian Longmaxi sichuan basin
下载PDF
A test of genetic divergence of a bird existing in the Sichuan Basin and its surrounding mountain ranges
19
作者 Lu Wang Fangqing Liu +3 位作者 Lan Zhao Yaling Xu Tianyu Zhang Longying Wen 《Avian Research》 SCIE CSCD 2023年第4期553-564,共12页
Island ecosystems,serving as natural laboratories,facilitate geographical isolation,ecological specialization,and species divergence.The Sichuan Basin,surrounded by mountain ranges,represents a typical continental isl... Island ecosystems,serving as natural laboratories,facilitate geographical isolation,ecological specialization,and species divergence.The Sichuan Basin,surrounded by mountain ranges,represents a typical continental island due to its marked environmental spatial heterogeneity.This heterogeneity may contribute to geographical isolation and habitat heterogeneity,resulting in genetic divergence within populations.Therefore,we used the White-browed Laughingthrush(Garrulax sannio)as a model specimen to investigate the genetic divergence in the Sichuan Basin and its surrounding mountain ranges,given its presence in various habitats within and beyond this basin.Employing a RAD-seq dataset of 140 G.sannio individuals from 17 distinct ecological zones in the Sichuan Basin and its surrounding mountain ranges,we conducted PCA,population structure analysis,phylogenetic tree construction,and gene flow analysis to comprehensively analyze G.sannio groups.Additionally,in conjunction with geographical and ecological data,we performed isolation by distance,isolation by environment,PCA,and latent factor mixed model analysis to identify factors influencing the genetic divergence among these G.sannio groups.In summary,the 17 G.sannio groups were categorized into high-elevation,medium-elevation,and lowelevation groups.Genetic divergence in G.sannio may be attributed to both geographical distance and key ecological factors,particularly elevation and key climatic variables.Notably,the high-elevation group exhibited a greater number of SNPs and selected genes associated with the key ecological factors compared to the lowelevation group.The ADCY9 gene and several associated key pathways were identified as crucial elements driving ecological adaptation(elevation and key climatic variables)in the high-elevation group.Furthermore,climate changes during the glacial cycles may have facilitated gene flow among these groups residing in the Sichuan Basin and its surrounding mountain ranges.Our findings provide evidence of genetic divergence in G.sannio influenced by the geographical distance and key ecological factors between the Sichuan Basin and its surrounding mountain ranges.These results lay the groundwork for future research on the molecular systematics of continental islands. 展开更多
关键词 Genetic divergence Restriction site-associated DNA sequencing (RAD-seq) sichuan basin White-browed Laughingthrush
下载PDF
Regional unconformities and their controls on hydrocarbon accumulation in Sichuan Basin, sW China
20
作者 YANG Weij WEI Guoqi +7 位作者 WU Saijun XIE Wuren JIN Hui ZENG Fuying HAO Cuiguo BAI Zhuangzhuang SU Yiqing LI Rong 《Petroleum Exploration and Development》 SCIE 2023年第3期573-587,共15页
Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regiona... Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regional stratigraphic unconformities are mainly developed in the Sichuan Basin,from the bottom up which are between pre-Sinian and Sinian,between Sinian and Cambrian,between pre-Permian and Permian,between middle and upper Permian,between middle and upper Triassic,and between Triassic and Jurassic.Especially,16 of 21l conventional(and tight)gas fields discovered are believed to have formed in relation to regional unconformities.Second,regional unconformity mainly controls hydrocarbon accumulation from five aspects:(1)The porosity and permeability of reservoirs under the unconformity are improved through weathering crust karstification to form large-scale karst reservoirs;(2)Good source-reservoir-caprock assemblage can form near the unconformity,which provides a basis for forming large gas field;(3)Regional unconformity may lead to stratigraphic pinch-out and rugged ancient landform,giving rise to a large area of stratigraphic and lithologic trap groups;(4)Regional unconformity provides a dominant channel for lateral migration of oil and gas;and(5)Regional unconformity is conducive to large-scale accumulation of oil and gas.Third,the areas related to regional unconformities are the exploration focus of large gas fields in the Sichuan Basin.The pre-Sinian is found with source rocks,reservoir rocks and other favorable conditions for the formation of large gas fields,and presents a large exploration potential.Thus,it is expected to be an important strategic replacement. 展开更多
关键词 UNCONFORMITY large gas filed sichuan basin karst reservoir hydrocarbon accumulation control exploration potential
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部