The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system.Simulation results showed ...The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system.Simulation results showed that the neutron relative flux proportion reduced with increasing cement thickness.When the cement thickness remains unchanged,the reduced proportion of thermal neutrons increases to a small extent,but the epithermal, intermediate,and fast neutrons will decrease according to the geometric progression.H element in the cement mainly affects the reduction of fast neutrons and other single-substance elements,e.g.,O,Ca,56Fe,Si,and Al.It also slows down the reduction of the fast neutrons via inelastic scattering.O contributes more than other elements in the reduction of fast neutrons.Changing the H content affects the thermal,epithermal,intermediate,and fast neutrons, while changing the Ca,Fe,and Si contents only influences the thermal,epithermal,and intermediate neutrons;hence, there is little effect on the reduction of fast neutrons.展开更多
A prompt gamma neutron activation analysis system with a 252Cf neutron source for on-line cement analysis has been simulated with the MCNP code.The results indicate that the optimum arrangement is a Bi shield of 20-mm...A prompt gamma neutron activation analysis system with a 252Cf neutron source for on-line cement analysis has been simulated with the MCNP code.The results indicate that the optimum arrangement is a Bi shield of 20-mm thickness,a polyethylene moderator of 50-mm thickness,a source-to-sample distance of 70 mm,and cement samples of 1200 mm×600 mm×170 mm.To absorb thermal neutrons and suppress low-energy γ-rays,the optimum-sized sheets are 150 mm×7 mm Cd,and 150 mm×15 mm Pb.展开更多
Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for FCC catalysts. The resultssuggested the existence ...Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for FCC catalysts. The resultssuggested the existence of self-similar solid flux profiles at low solid fluxes. Non-uniformity in theradial solids fluxes was found with a high solid flowing mainly downward near the wall. The modelpredictions were reasonably caught up the experimental trends.展开更多
The neutron flux monitor(NFM)system is an important diagnostic subsystem introduced by large nuclear fusion devices such as international thermonuclear experimental reactor(ITER),Japan torus-60,tokamak fusion test rea...The neutron flux monitor(NFM)system is an important diagnostic subsystem introduced by large nuclear fusion devices such as international thermonuclear experimental reactor(ITER),Japan torus-60,tokamak fusion test reactor,and HL-2 A.Neutron fluxes can provide real-time parameters for nuclear fusion,including neutron source intensity and fusion power.Corresponding to different nuclear reaction periods,neutron fluxes span over seven decades,thereby requiring electronic devices to operate in counting and Campbelling modes simultaneously.Therefore,it is crucial to design a real-time NFM system to encompass such a wide dynamic range.In this study,a high-precision NFM system with a wide measurement range of neutron flux is implemented using realtime multipoint linear calibration.It can automatically switch between counting and Campbelling modes with variations in the neutron flux.We established a testing platform to verify the feasibility of the NFM system,which can output the simulated neutron signal using an arbitrary waveform generator.Meanwhile,the accurate calibration interval of the Campbelling mode is defined well.Based on the above-mentioned design,the system satisfies the requirements,offering a dynamic range of 10~8 cps,temporal resolution of 1 ms,and maximal relative error of 4%measured at the signal-to-noise ratio of 15.8 dB.Additionally,the NFM system is verified in a field experiment involving HL-2 A,and the measured neutron flux is consistent with the results.展开更多
基金Supported by National Natural Science Foundation for Distinguished Young Scholar(41025015)NSFC(40974065,11105132)+3 种基金Province Key Technology R&D Program(2011FZ0055)National High Technology Research and Development Program of China(2012AA063501)the Basic Research for Application of Sichuan Province(2012JY0109)China Postdoctoral Science Foundation(2012M520245)
文摘The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system.Simulation results showed that the neutron relative flux proportion reduced with increasing cement thickness.When the cement thickness remains unchanged,the reduced proportion of thermal neutrons increases to a small extent,but the epithermal, intermediate,and fast neutrons will decrease according to the geometric progression.H element in the cement mainly affects the reduction of fast neutrons and other single-substance elements,e.g.,O,Ca,56Fe,Si,and Al.It also slows down the reduction of the fast neutrons via inelastic scattering.O contributes more than other elements in the reduction of fast neutrons.Changing the H content affects the thermal,epithermal,intermediate,and fast neutrons, while changing the Ca,Fe,and Si contents only influences the thermal,epithermal,and intermediate neutrons;hence, there is little effect on the reduction of fast neutrons.
基金Supported by NSFC(40974065)National Innovation Method(2008IM021500)+1 种基金National Key Technology R & D Program(2008BAC44B04)Province Key Technology R & D Program(2008SZ0148,2008GZ0197,2008GZ0040)
文摘A prompt gamma neutron activation analysis system with a 252Cf neutron source for on-line cement analysis has been simulated with the MCNP code.The results indicate that the optimum arrangement is a Bi shield of 20-mm thickness,a polyethylene moderator of 50-mm thickness,a source-to-sample distance of 70 mm,and cement samples of 1200 mm×600 mm×170 mm.To absorb thermal neutrons and suppress low-energy γ-rays,the optimum-sized sheets are 150 mm×7 mm Cd,and 150 mm×15 mm Pb.
文摘Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for FCC catalysts. The resultssuggested the existence of self-similar solid flux profiles at low solid fluxes. Non-uniformity in theradial solids fluxes was found with a high solid flowing mainly downward near the wall. The modelpredictions were reasonably caught up the experimental trends.
基金supported by the National Natural Science Foundation of China(Nos.11475131,11975307,and 11575184)the National Magnetic Confinement Fusion Energy Development Research(No.2013GB104003)。
文摘The neutron flux monitor(NFM)system is an important diagnostic subsystem introduced by large nuclear fusion devices such as international thermonuclear experimental reactor(ITER),Japan torus-60,tokamak fusion test reactor,and HL-2 A.Neutron fluxes can provide real-time parameters for nuclear fusion,including neutron source intensity and fusion power.Corresponding to different nuclear reaction periods,neutron fluxes span over seven decades,thereby requiring electronic devices to operate in counting and Campbelling modes simultaneously.Therefore,it is crucial to design a real-time NFM system to encompass such a wide dynamic range.In this study,a high-precision NFM system with a wide measurement range of neutron flux is implemented using realtime multipoint linear calibration.It can automatically switch between counting and Campbelling modes with variations in the neutron flux.We established a testing platform to verify the feasibility of the NFM system,which can output the simulated neutron signal using an arbitrary waveform generator.Meanwhile,the accurate calibration interval of the Campbelling mode is defined well.Based on the above-mentioned design,the system satisfies the requirements,offering a dynamic range of 10~8 cps,temporal resolution of 1 ms,and maximal relative error of 4%measured at the signal-to-noise ratio of 15.8 dB.Additionally,the NFM system is verified in a field experiment involving HL-2 A,and the measured neutron flux is consistent with the results.