期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Influences of Soil Physical Properties on Water-Supplying Capacity 被引量:1
1
作者 ZHAOBINGZI XUFUAN 《Pedosphere》 SCIE CAS CSCD 1997年第4期367-374,共8页
The water-supplying capacity of two agricultural soils, red soil in Jiangxi Province and meadow soil in Henan Province, was assessed mainly using physical investigations. The reticulated mottting horizon in the red so... The water-supplying capacity of two agricultural soils, red soil in Jiangxi Province and meadow soil in Henan Province, was assessed mainly using physical investigations. The reticulated mottting horizon in the red soil was a horizon limiting roots distribution due to its high density and hardness in structure and low pH (pH 5.05). The resistance of the red soil to drought hazard was poor because of its low water-supply capacity and poor hydraulic conductivity. The meadow soil had superior profile infiltration to that of the red soil and great available water-storage capacity) which resulted in low run-off loss, especially in the wheat-growth season. It was difficult for water stored in the deep layers of the meadow soil to reach the surface due to the low unsaturated hydraulic conductivity of its clay-rich horizon in subsoil. However, water stored in deep layers was still available because the roots could extend to the deep layers due to the relatively low density in soil structure. 展开更多
关键词 meadow soil red soil soil physical properties water-supplying capacity
下载PDF
Effects of Straw and Biochar Returned to the Soil on Soil Physical Properties and pH Value in Cold Rice Region 被引量:1
2
作者 Yuefeng CUI Hongru SHI +5 位作者 Aonan GUO Guocai SUN Guiyan WANG Jian WANG Wenjia HUANG Tiegang LU 《Asian Agricultural Research》 2021年第2期27-32,共6页
[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly ret... [Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly returned to the soil and charred straw(biochar)returned to the soil on soil bulk density,porosity,temperature and pH value of cold paddy soil were studied in this paper.[Results]The results showed that compared with conventional production,straw(6 t/ha),a small amount of biochar(2 t/ha)and a large amount of biochar(40 t/ha)returned to the soil reduced paddy soil bulk density at different growth stages by 6.02%-11.86%,2.69%-6.67%and 8.58%-11.32%,respectively,increased total porosity by 7.41%-14.93%,3.19%-8.38%and 9.81%-14.27%,respectively,and increased aeration porosity by 22.28%-192.11%,17.80%-92.11%and 52.44%-157.11%,respectively.Straw and a small amount of biochar returned to the soil had no significant effect on soil temperature and pH value of paddy field,but a large amount of biochar returned to the soil could significantly increase soil temperature by 5.13%-8.79%and pH value by 3.15%-5.96%in the later stage of rice growth.[Conclusions]The straw and biochar returned to the soil could reduce soil bulk density,increase total porosity and aeration porosity,and only a large amount of biochar returned to the soil could significantly increase soil temperature and pH value. 展开更多
关键词 STRAW BIOCHAR Cold rice region soil physical properties soil pH value
下载PDF
Effects of restoration modes on the spatial distribution of soil physical properties after land consolidation: a multifractal analysis
3
作者 KE Zengming LIU Xiaoli +4 位作者 MA Lihui TU Wen FENG Zhe JIAO Feng WANG Zhanli 《Journal of Arid Land》 SCIE CSCD 2021年第12期1201-1214,共14页
Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to ... Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China.In our study,three land restoration modes were selected including natural restoration land(NR),alfalfa land(AL)and maize land(ML).Soil texture composition,including the contents of clay,silt and sand,field capacity(FC),saturated conductivity(Ks)and bulk density(BD)were determined using a multifractal analysis.SPP were found to possess variable characteristics,although land consolidation destroyed the soil structure and decreased the spatial autocorrelation.Furthermore,SPP varied with land restoration and could be illustrated by the multifractal parameters of D1,ΔD,ΔαandΔf in different modes of land restoration.Owing to multiple compaction from large machinery in the surface soil,soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes.Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP,which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR.In addition,compared with ML,Δαvalues of NR and AL were 4.9-and 3.0-fold that of FC,respectively,andΔαvalues of NR and AL were 2.3-and 1.5-fold higher than those of Ks,respectively.These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation.Thus,we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP. 展开更多
关键词 land consolidation land restoration multifractal analysis spatial distribution soil physical properties
下载PDF
Improvement of Soil Physical Properties with Soil Con-ditioners
4
作者 ZHAOBING-ZI XUFU-AN 《Pedosphere》 SCIE CAS CSCD 1995年第4期363-370,共8页
Effects of non-ionic polyacrylamide(PAM), anionic polyacrylamide(PHP), cationic polyacrylamide (PCA-M), non-ionic polyvinylalcohol(PVA), anionic hydrolyzed polyacrylonitrile(HPAN) and polyethyleneoxide(PE-O) on the ph... Effects of non-ionic polyacrylamide(PAM), anionic polyacrylamide(PHP), cationic polyacrylamide (PCA-M), non-ionic polyvinylalcohol(PVA), anionic hydrolyzed polyacrylonitrile(HPAN) and polyethyleneoxide(PE-O) on the physical properties of three different soil types were studied. Content of water-stable aggregateslarger than 0.25 mm increased to varying extents for different soils and soil conditioners. Among the sixkinds of conditioners, non-ionic polyacrylamide(PAM) was the most effective for red soil while polyethyle-neoxide(PEO) the least effective for Chao soil, red soil and yellow-brown soil. Water-stable aggregatesincreased with the rates of PEO and PAM application (except for PEO treatment of yellow-brown soil) andwith the molecular weight of PEO within a certain range. Only evaporation rate of Chao soil decreased afterapplication of PAM and HPAN to Chao soil and red soil. 展开更多
关键词 soil conditioners soil physical properties soil types
下载PDF
Effects of Subsoiling on Some Soil Physical Properties and Wheat Yield in a Dry Land Ecological Condition
5
作者 S. Afzalinia A. A. Solhjou I. Eskandari 《Journal of Agricultural Science and Technology(A)》 2011年第6期842-847,共6页
In order to evaluate the effect of subsoiling on the soil physical properties and wheat yield in dry land conditions, this research was conducted in Mamassani area of Fars province in Iran. The experiment was laid dow... In order to evaluate the effect of subsoiling on the soil physical properties and wheat yield in dry land conditions, this research was conducted in Mamassani area of Fars province in Iran. The experiment was laid down in the form of a complete block experimental design with four treatments and four replications for three years. Treatments included: (1) conventional tillage without using subsoiler which was control treatment (So); (2) using subsoiler with the shank space of 40 cm which was equal to the subsoiling depth (SO; (3) using subsoiler with the shank space of 60 cm which was 1.5 times of the subsoiling depth (S2); and (4) using subsoiler with the shank space of 80 cm which was 2 times of the subsoiling depth (S3). Subsoiling depth was set at 40 cm which was the lower limit of the hard pan depth in the soil. Soil cone index, soil bulk density, soil moisture content, wheat yield, and yield components were measured in this study and SAS software was used to analyze the collected data. Results showed that subsoiling decreased the soil bulk density and cone index, and increased water retention of the soil. Results also revealed that applying subsoiler increased wheat yield and yield components in our dry land conditions. Since subsoiling improved soil physical conditions and increases wheat yield, applying subsoiler in such a dry land conditions is therefore recommended. Results of this study also showed that subsoiling with the shank space of 40 cm and 60 cm had better performance compared to the shank space of 80 cm. On the other hand, shank space of 40 cm reduced the subsoiler effective working width and consequently effective field capacity. Therefore, subsoiler with a shank space of 60 cm is recommended for application in dry land soils of our type. 展开更多
关键词 SUBsoilING soil physical properties dry land conditions wheat yield.
下载PDF
Tillage and Poultry Manure Effects on Soil Physical Properties, Nutrient Status, Growth, Dry Matter and Grain Yield of Sorghum
6
作者 T. M. Agbede S. O. Ojeniyi 《Journal of Agricultural Science and Technology》 2010年第3期45-59,共15页
The effects of different tillage systems and poultry manure on soil physical properties, performance and nutrients in sorghum were studied for three years at Owo, southwest Nigeria. There was factorial combinations of... The effects of different tillage systems and poultry manure on soil physical properties, performance and nutrients in sorghum were studied for three years at Owo, southwest Nigeria. There was factorial combinations of herbicide-based zero tillage (ZT), manual clearing (MC), disc ploughing (P), ploughing plus harrowing (P+H) and ploughing plus double harrowing (P+2H), and two rates of poultry manure at 0 and 7.5 Mg ha^-1. Herbicide-based zero tillage and manual clearing reduced soil temperature and conserved more water than mechanized tillage techniques. Poultry manure reduced soil bulk density and temperature and increased soil water and porosity. There was a percentage decrease of leaf N, P, K, Ca and Mg concentrations, plant height, leaf area, stem girth, root dry weight, dry matter and grain yield in ascending order for herbicide-based zero tillage, manual clearing, ploughing, ploughing plus harrowing and ploughing plus double harrowing while percentage increases were recorded in a descending order for all the various combinations of tillage with poultry manure in that order. Poultry manure in combination with tillage increased dry matter and grain yield by 33.1 and 39.5%, respectively in comparison with tillage only. The manure-zero tillage methods increased dry matter and grain yield by 8% and 15%, respectively when compared with manure-mechanized tillage methods. Zero tillage or manual clearing in combination with 7.5 Mg ha^-1 poultry manure was most suitable for sorghum cultivation. 展开更多
关键词 TILLAGE poultry manure soil physical properties NUTRIENTS SORGHUM NIGERIA
下载PDF
Effects of Spatial Information of Soil Physical Properties on Hydrological Modeling Based on a Distributed Hydrological Model
7
作者 LI Xianghu ZHANG Qi YE Xuchun 《Chinese Geographical Science》 SCIE CSCD 2013年第2期182-193,共12页
The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial ... The spatial distribution of soil physical properties is essential for modeling and understanding hydrological processes. In this study, the different spatial information (the conventional soil types map-based spatial information (STMB) versus refined spatial information map (RSIM)) of soil physical properties, including field capacity, soil porosity and saturated hydraulic conductivity are used respectively as input data for Water Flow Model for Lake Catchment (WATLAC) to determine their effectiveness in simulating hydrological processes and to expound the effects on model performance in terms of estimating groundwater recharge, soil evaporation, runoff generation as well as partitioning of surface and subsurface water flow. The results show that: 1) the simulated stream flow hydrographs based on the STMB and RSIM soil data reproduce the observed hydrographs well. There is no significant increase in model accuracy as more precise soil physical properties information being used, but WATLAC model using the RSIM soil data could predict more runoff volume and reduce the relative runoff depth errors; 2) the groundwater recharges have a consistent trend for both cases, while the STMB soil data tend to produce higher groundwater recharges than the RSIM soil data. In addition, the spatial distribution of annual groundwater recharge is significantly affected by the spatial distribution of soil physical properties; 3) the soil evaporation simulated using the STMB and RSIM soil data are similar to each other, and the spatial distribution patterns are also insensitive to the spatial information of soil physical properties; and 4) although the different spatial information of soil physical properties does not cause apparent difference in overall stream flow, the partitioning of surface and subsurface water flow is distinct. The implications of this study are that the refined spatial information of soil physical properties does not necessarily contribute to a more accurate prediction of stream flow, and the selection of appropriate soil physical property data needs to consider the scale of watersheds and the level of accuracy required. 展开更多
关键词 soil physical property hydrological modeling groundwater recharge soil evaporation runoff component Water FlowModel for Lake Catchment (WATLAC)
下载PDF
Influences of mechanized tillage and sowing modes on soil physical properties,soybean yield and economic benefits in mollisols region of Northeast China
8
作者 Haitao Chen Jian Sun +1 位作者 Yiming Zhang Jinyou Qiao 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第3期130-139,共10页
Appropriate mechanized straw returning and tillage sowing techniques were effective means to optimize soil physical properties and enhance agricultural productivity,as well as important measures for the conservation a... Appropriate mechanized straw returning and tillage sowing techniques were effective means to optimize soil physical properties and enhance agricultural productivity,as well as important measures for the conservation and restoration of mollisols region in Northeast China.Under the condition of full-scale maize straw returning,four mechanized tillage and sowing modes were set,including plough tillage and sowing(PTS),combined tillage and sowing(CTS),no-tillage and sowing(NTS),and no-tillage and sowing with straw mulching(NTSM).In 2020 and 2021,the study investigated the effects of different mechanized tillage and sowing modes on soil physical properties,soybean yield and economic benefits.The results showed that during the pod-setting and pod-filling period of soybean,the NTS and NTSM treatments exhibited better effects on deep soil insulation and shallow soil moisture retention,the soil physical structure of PTS and CTS treatments were relatively ideal.Compared with PTS and CTS treatments,NTS and NTSM treatments significantly increased soil gravimetric water content(SWC)by 2.35%to 7.98%in the 5-15 cm soil layer and increased soil temperature(ST)by 3.94%to 10.42%in the 25-35 cm soil layer(p<0.05),significantly increased soil bulk density(SBD)by 2.98%to 6.72%and significantly reduced soil total porosity(STP)by 3.88%to 6.53%in the 5-25 cm soil layer,and significantly reduced soil gas phase ratio by 8.26%to 6.27%at the 15-25 cm soil layers,which caused soil three-phase ratio(STPR)of PTS and CTS treatment in 15-25 cm soil layer were relatively ideal.The soybean yield of NTSM treatment in 2020 was not significantly different from PTS and CTS treatment(p>0.05),the soybean yield of NTSM treatment in 2021 significantly increased by 7.30%and 5.84%over PTS and CTS treatments,respectively.And the average annual profit per unit area of NTSM treatment increased by 12.84%,12.41%and 8.57%compared with PTS,CTS and NTS treatments,respectively.Therefore,it was recommended to combine NTSM technique with PTS or CTS technique in a maize-soybean rotation system in mollisols region.The research results provided reference for the selection of appropriate mechanized tillage and sowing techniques in Northeast China’s mollisols region and had important guiding significance and practical value for the construction of rational plow layers and the implementation of conservation tillage. 展开更多
关键词 mechanized tillage and sowing modes full-scale straw returning soil physical properties soybean yield economic benefits mollisols conservation
原文传递
Digital mapping of soil physical and mechanical properties using machine learning at the watershed scale
9
作者 Mohammad Sajjad GHAVAMI Shamsollah AYOUBI +1 位作者 Mohammad Reza MOSADDEGHI Salman Naimi 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2975-2992,共18页
Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the ap... Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the application of this tool,thus urging the need to estimate soil properties and consequently,to perform the spatial distribution.This research attempted to examine the proficiency of three machine learning methods(RF:Random Forest;Cubist:Regression Tree;and SVM:Support Vector Machine)to predict soil physical and mechanical properties,saturated hydraulic conductivity(Ks),Cohesion measured by fall-cone at the saturated(Psat)and dry(Pdry)states,hardness index(HI)and dry shear strength(SS)by integrating environmental variables and soil features in the Zayandeh-Rood dam watershed,central Iran.To determine the best combination of input variables,three scenarios were examined as follows:scenarioⅠ,terrain attributes derivative from a digital elevation model(DEM)+remotely sensed data;scenarioⅡ,covariates of scenarioⅠ+selected climatic data and some thematic maps;scenarioⅢ,covariates in scenarioⅡ+intrinsic soil properties(Clay,Silt,Sand,bulk density(BD),soil organic matter(SOM),calcium carbonate equivalent(CCE),mean weight diameter(MWD)and geometric weight diameter(GWD)).The results showed that for Ks,Psat Pdry and SS,the best performance was found by the RF model in the third scenario,with R2=0.53,0.32,0.31 and 0.41,respectively,while for soil hardness index(HI),Cubist model in the third scenario with R2=0.25 showed the highest performance.For predicting Ks and Psat,soil characteristics(i.e.clay and soil SOM and BD),and land use were the most important variables.For predicting Pdry,HI,and SS,some topographical characteristics(Valley depth,catchment area,mltiresolution of ridge top flatness index),and some soil characteristics(i.e.clay,SOM and MWD)were the most important input variables.The results of this research present moderate accuracy,however,the methodology employed provides quick and costeffective information serving as the scientific basis for decision-making goals. 展开更多
关键词 Machine learning soil physical property soilmechanical property Saturatedhydraulic conductivity soil cohesion soil shear strength.
原文传递
GIS-Based Assessment of Soil Chemical and Physical Properties as a Basis for Land Reclamation in Toshka Area, Aswan, EGYPT
10
作者 Ahmed A. M. Awad Mostafa M. A. Al-Soghir 《Open Journal of Geology》 2023年第7期697-719,共23页
The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the... The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil. 展开更多
关键词 Land Reclamation soil Chemical and physical properties Chemical Quality Index Fertility Quality Index
下载PDF
Effects of irrigation water salinity on soil salt content distribution,soil physical properties and water use efficiency of maize for seed production in arid Northwest China 被引量:6
11
作者 Chengfu Yuan Shaoyuan Feng +2 位作者 Juan Wang Zailin Huo Quanyi Ji 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期137-145,共9页
In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four diff... In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four different water salinity levels that were arranged in a split plot design.These four water salinity levels were s0,s3,s6 and s9(0.71,3,6 and 9 g/L,respectively).The soil salt content,soil bulk density,soil porosity,saturated hydraulic conductivity,plant height,leaf area index and yield of maize for seed production were measured for studying the effects of saline water irrigation on soil salt content distribution,soil physical properties and water use efficiency.It was observed that higher salinity level of irrigation water and long duration of saline water irrigation resulted in more salt accumulation.Compared to initial values,the soil salt accumulation in 0-100 cm soil layer after three years of experiments for s0,s3,s6 and s9 was 0.189 mg/cm3,0.654 mg/cm3,0.717 mg/cm3 and 1.135 mg/cm3,respectively.Both greater salt levels in the irrigation water and frequent saline water irrigation led to greater soil bulk density,but poorer soil porosity and less saturated hydraulic conductivity.The saturated hydraulic conductivity decreased with increase in soil bulk density,but increased with improvement in soil porosity.It was noted that the maize height,leaf area index and maize yield gradually decreased with increase in water salinity.The maize yield decreased over 25%and the water use efficiency also gradually declined when irrigated with water containing 6 g/L and 9 g/L salinity levels.However,maize yield following saline water irrigation with 3 g/L decreased less than 20%and the decline in water use efficiency was not significant during the three-year experiment period.The results demonstrate that irrigation with saline water at the level of 6 g/L and 9 g/L in the study area is not suitable,while saline water irrigation with 3 g/L would be acceptable for a short duration together with salt leaching through spring irrigation before sowing. 展开更多
关键词 saline water irrigation soil salt content distribution soil physical properties maize for seed production water use efficiency
原文传递
Experimental research on physical properties of saline soil subgrade filler in Chaerhan region 被引量:2
12
作者 Yu Zhang JianHong Fang +1 位作者 JianKun Liu AnHua Xu 《Research in Cold and Arid Regions》 CSCD 2015年第3期212-215,共4页
In order to improve the engineering stability of saline soil of high chloride content in the Chaerhan salt lake region, six typical characteristics saline soil samples were selected, and tests on their primary physica... In order to improve the engineering stability of saline soil of high chloride content in the Chaerhan salt lake region, six typical characteristics saline soil samples were selected, and tests on their primary physical properties (total salt content, specific gravity of soil, liquid limit, plastic limit, maximum dry density, and optimal water content) were conducted. The relationships among them were analyzed, a series of variation laws between salt content and these basic physical parameters were determined, and regression equations were derived. This research can improve future engineering design and construction in saline soils and can also help prevent subgrade filler from undermining subgrade stability and producing disease. 展开更多
关键词 saline soil salt content soil physical properties
下载PDF
Soil Physical and Chemical Properties of Five Subtropical Forests in Lingao of Hainan
13
作者 薛杨 宿少锋 +1 位作者 王小燕 林之盼 《Agricultural Science & Technology》 CAS 2017年第8期1459-1464,共6页
With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosi... With 5 types of typical forests as research object, the physical and chemical properties of different types of forests were analyzed by sample plot investigation method. The results showed that: the soil total porosity was the highest in the Casuarina equisetifolia forest (46.168%), but the lowest in the Encalyptus robusta forest (39.46%). The soil capillary porosity was the highest in the Acacia mangium forest (22.57%), but the lowest in the secondary forest (18.95%). The soil water content was the highest in the C. equisetifolia forest, with a mean value of 27.85%, but the lowest in the secondary forest, with a mean value of 4.34%. The soil pH values were in the range of 4.81-6.59, the soils in the A. mangium forest, C. equisetifolia forest and E. robusta forest were strongly acidic (pH 4.5-5.5), and the soils in the secondary forest and C. nucifera forest were weakly acidic. The soils had organic matter contents in the range of 0.34-28.68 g/kg, and showed an order of A. mangium forest〉C. equisetifolia forest〉E. robusta forest〉secondary forest〉C. nucifera forest, with a decreasing trend with the soil depth increasing. The soil total N contents were in the range of 0.10-1.63 g/kg, the A. mangium forest showed the highest soil total N contents, while the C. nucifera forest exhibited the lowest soil total N contents; the soil total P contents were in the range of 0.21-1.74 g/kg, and the E. robusta forest had the highest soil total P contents; and the soil total K contents were in the range of 0.16-2.15 g/kg, and the A. mangium forest exhibited the highest soil total K contents. The soil available P contents were in the range of 0.98-132.46 mg/kg; and the secondary forests had the highest soil available P contents; and the soil rapidly available K contents were in the range of 3.03-27.35 mg/kg, and the C. nucifera forest exhibited the highest soil rapidly available K contents. The soil ammonium N contents were in the range of 1.38-5.15 mg/kg, and the nitrate N contents were in the range were in the range of 0.56 -3.51 mg/kg. The A. mangium forest showed the highest soil nitrate N contents (with a mean value of 2.29 mg/kg) and ammonium N contents (with a mean value of 3.93 mg/kg). For the same forest type, with the increase of soil depth, the nitrate nitrogen and ammonium nitrogen content also showed a decreasing trend. 展开更多
关键词 Lingao County Coastal platform Different forest types soil physical and chemical properties COMPARISON
下载PDF
Shear resistance characteristics and influencing factors of root-soil composite on an alpine metal mine dump slope with different recovery periods
14
作者 PANG Jinghao LIANG Shen +5 位作者 LIU Yabin LI Shengwei WANG Shu ZHU Haili LI Guorong HU Xiasong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期835-849,共15页
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha... Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil. 展开更多
关键词 Alpine mine dump Artificial vegetation restoration period Rooted soil Shear resistance characteristics Root traits soil physical properties
原文传递
Effects of soil physical properties on soil loss due to manual yam harvesting under a sandy loam environment
15
作者 Pius Olufemi Olusegun Dada Olusegun Rasheed Adeyanju +1 位作者 Olayemi Johnson Adeosun Johnson Kayode Adewumi 《International Soil and Water Conservation Research》 SCIE CSCD 2016年第2期121-125,共5页
Soil degradation is a growing problem worldwide because it reduces the fertile top layer of the soil available for food production and one such degradative action is soil erosion due to the harvesting of crops.Soil lo... Soil degradation is a growing problem worldwide because it reduces the fertile top layer of the soil available for food production and one such degradative action is soil erosion due to the harvesting of crops.Soil loss due to crop harvesting with particular reference to yam tubers has not been quantified globally despite the fact that yam is a major staple food consumed worldwide and it is prevalent in many parts of Nigeria.Harvesting yams in our environment is usually done with the soil attached to the yams due to the fact that farmers do not want additional work of removing soil attached to the yams.This study investigates the soil physical properties that influence soil loss due to yam harvesting in Abeokuta,South-Western Nigeria and to assess the quantity of soil loss due to yam harvesting.Based on representative sampling area per location,yam tubers were harvested manually within the entire yam farmland from October to December 2012.Gross weight,net weight and the amount of soil adhering to the yams were measured.Effects of soil physical properties such as soil moisture content,heap bulk density,inter-heap bulk density and soil texture were investigated with respect to soil losses.The results showed that moisture content ranged from 4%to 15%,heap bulk density ranged from 0.93 to 1.29 g cm^(-3) and inter-heap bulk density ranged from 1.03 to 1.50 g cm^(-3).They all had a positive correlation with soil loss.Soil particle size analysis for Federal University of Agricultural,Abeokuta(FUNAAB)and Alabata revealed that sand content was(86.78%and 88.32%),clay content(10.69%and 7.6%)and silt content,(2.53%and 4.08%)respectively.Study also revealed that clay content of the soil positively influenced the total soil loss during the yam harvesting.The mean soil losses in Federal University of Agriculture,Abeokuta(FUNAAB)and Alabata village yam farms were 4303 and 2125 kg/ha/harvest respectively.The study also revealed that soil moisture content at harvesting time and clay content are the key factors affecting soil loss due to yam harvesting.Consequently,soil loss due to crop harvesting should be considered in soil erosion control strategies,sediment budget and for better post harvest procedures. 展开更多
关键词 Heap bulk density Manual yam harvesting soil degradation soil loss soil physical properties
原文传递
Effects of Green Manure Mixed Cropping Patterns on Physical and Chemical Properties of Soil and Economic Characters of Flue-cured Tobacco 被引量:4
16
作者 陈治锋 邓小华 +2 位作者 周米良 田峰 张明发 《Agricultural Science & Technology》 CAS 2015年第8期1723-1727,共5页
[Objective] The aim was to clear the suitable green manure cropping pat- terns in Xiangxi tobacco-planting areas. [Method] 8 treatments were set to study the effects of the monoculture and mixed cropping of common vet... [Objective] The aim was to clear the suitable green manure cropping pat- terns in Xiangxi tobacco-planting areas. [Method] 8 treatments were set to study the effects of the monoculture and mixed cropping of common vetch (Vicia gigantea Bge.), perennial ryegrass (Lofium) and rapeseed (Brassica campestris L.) on physi- cal and chemical properties of soil and economic characters of flue-cured tobacco. [Result] (1) Green manure turnover can reduce soil bulk density by 1.08%-8.62%, and the effect of green manure mixed cropping pattern was the best. (2) Green manure turnover also can increase the soil nutrient, soil organic matter, total nitro- gen (N), total phosphorus (P), total potassium (K), alkali-hydrolyzale N, rapidly available P and rapidly available K by 1.44%-6.10%, 0.01-0.12 g/kg, 1.89%- 11.32%, 0.12%-3.56%, 1.06%-11.76%, 0.04%-18.93% and 0.98%-23.12%, respec- tively, and the effect of the monoculture of common vetch was the best.(3) The overall change of soil pH was not obvious.(4)Green manure turnover can increase the yield and output of flue-cured tobacco, and the effect of the monoculture of common vetch was the best. [Conclusion] The monoculture of common vetch can be generalized in the dry land of Xiangxi tobacco-planting areas. 展开更多
关键词 Green manure Mixed cropping soil physical and chemical properties Economic characters of flue-cured tobacco
下载PDF
Effects of Long-Term Winter Planted Green Manure on Physical Properties of Reddish Paddy Soil Under a Double-Rice Cropping System 被引量:42
17
作者 YANG Zeng-ping XU Ming-gang +4 位作者 ZHENG Sheng-xian NIE Jun GAO Ju-sheng LIAO Yu-lin XIE Jian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第4期655-664,共10页
Soil physical properties are important indicators of the potential for agricultural production.Our objective was to evaluate the effects of long-term inputs of green manures on physical properties of a reddish paddy s... Soil physical properties are important indicators of the potential for agricultural production.Our objective was to evaluate the effects of long-term inputs of green manures on physical properties of a reddish paddy soil(Fe-Typic Hapli-Stagnic Anthrosols) under a double cropping system.The common cropping pattern before the study was early-late rice-fallow(winter).The field treatments included rice-rice-fallow(R-R-WF),rice-rice-rape(R-R-RP),rice-rice-Chinese milk vetch(RR-MV),and rice-rice-ryegrass(R-R-RG).The rape,Chinese milk vetch and ryegrass were all incorporated as green manures 15 d before early rice transplanting during the following year.The soil bulk density in all green manure treatments was significantly reduced compared with the winter fallow treatment.Soil porosity with green manure applications was significantly higher than that under the winter fallow.The green manure treatments had higher 0.25-5 mm water stable aggregates and aggregates stabilities in the plow layer(0-15 cm depth) compared with the fallow treatment.The mean weight diameter(MWD) and normalized mean weight diameter(NMWD) of aggregates in the green manure treatment were larger than that with the winter fallow.Soil given green manure retained both a higher water holding capacity in the plow layer soil,and a larger volume of moisture at all matric potentials(-10,-33 and-100 kPa).We conclude that the management of double-rice fields in southern central China should be encouraged to use green manures along with chemical fertilizers to increase SOC content,improve soil physical properties and soil fertility. 展开更多
关键词 long-term experiment soil physical property green manure reddish paddy soil
下载PDF
Effects of Crude Oil Contamination on Soil Physical and Chemical Properties in Momoge Wetland of China 被引量:12
18
作者 WANG Ying FENG Jiang +3 位作者 LIN Qianxin LYU Xianguo WANG Xiaoyu WANG Guoping 《Chinese Geographical Science》 SCIE CSCD 2013年第6期708-715,共8页
Large oilfields are often coincidentally located in major river deltas and wetlands,and potentially damage the structure,function and ecosystem service values of wetlands during oil exploration.In the present study,th... Large oilfields are often coincidentally located in major river deltas and wetlands,and potentially damage the structure,function and ecosystem service values of wetlands during oil exploration.In the present study,the effects of crude oil contamination during oil exploration on soil physical and chemical properties were investigated in marshes of the Momoge National Nature Reserve in Jilin Province,China.The concentrations of total petroleum hydrocarbons in the marsh soil near the oil wells are significantly higher than those in the adjacent control marsh.Soil water contents in oil-contaminated marshes are negatively correlated with soil temperature and are significantly lower than those in the control area,especially in fall.Crude oil contamination significantly increases the soil pH up to8.0,and reduces available phosphorus concentrations in the soil.The concentrations of total organic carbon are significantly different among sampling sites.Therefore,crude oil contamination could potentially alkalinize marsh soils,adversely affect soil fertility and physical properties,and cause deterioration of the marshes in the Momoge National Nature Reserve.Phyto-remediation by planting Calamagrostis angustifolia has the potential to simultaneously restore and remediate the petroleum hydrocarbon-contaminated wetlands.Crude oil contamination affects the soil physical and chemical properties,so developing an effective restoration program in the Momoge wetland is neccesary. 展开更多
关键词 crude oil contamination marsh soil oilfield in marshes soil physical and chemical properties WETLAND Momoge National Nature Reserve
下载PDF
Effect of fire severity on physical and biochemical soil properties in Zagros oak(Quercus brantii Lindl.)forests in Iran 被引量:16
19
作者 M.Heydari A.Rostamy +1 位作者 F.Najafi D.C.Dey 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第1期95-104,共10页
Fire affects the physical and chemical properties and soil biological activity of natural ecosystems. This study was conducted in the Miyan Tang region, Ilam Province in western Iran. The study site was 110 hectares, ... Fire affects the physical and chemical properties and soil biological activity of natural ecosystems. This study was conducted in the Miyan Tang region, Ilam Province in western Iran. The study site was 110 hectares, where we sampled soils in areas that were classified by fire severity: low (LS), high (HS) and medium severity (MS), and unburned (UB), which served as the control. In each severity class, 25 transect points were randomly selected for measurement. Around each transect plot center, 3 soil samples were selected randomly and soils collected from the 0 to 20 cm depth were combined into a composite sample that was used in laboratory analysis to represent conditions at that point. Plots in the UB and LS fire classes had similar soil conditions and had higher values of factors such as saturated moisture, organic carbon, carbon dioxide, and silt and clay content. In contrast, plots in the HS and MS fire severity classes were clustered in the positive direction along the first axis that represented gradients in soil acidity, electrical conductivity, cation exchange capacity, accessible phosphorus, accessible potassium, bulk density, and sand. Soil attributes were similar in areas of HS and MS fire severity classes, whereas soil conditions in the LS class and UB controls were most similar. Fire in the LS areas either did not significantly alter the physicalchemical soil properties and microbial basal respiration, or soils were able to recover quickly after being burned. 展开更多
关键词 Fire severity OAK soil respiration physical and chemical soil properties
下载PDF
Robinia pseudoacacia leaves improve soil physical and chemical properties 被引量:1
20
作者 Babar KHAN Abdukadir Ablimit +1 位作者 Rashed MAHMOOD Muhammad QASIM 《Journal of Arid Land》 SCIE 2010年第4期266-271,共6页
The role of the leaves of Robinia pseudoacacia L., which is widely distributed in the arid lands, on improving soil physical and chemical properties was analyzed at various incubation periods. The incubated soils adde... The role of the leaves of Robinia pseudoacacia L., which is widely distributed in the arid lands, on improving soil physical and chemical properties was analyzed at various incubation periods. The incubated soils added with 0, 25, 50 and 75 g Robinia pseudoacacia leaves were tested after consecutive incubation intervals of 6, 8 and 10 months and the different soil parameters were measured. The results showed the increases in organic matter (OM), extractable K, cation exchange capacity (CEC), aggregate stability and water holding capacity, but the decreases in pH value and bulk density after 6 months’ incubation. The gradual decrease in change rates of soil properties indicated less microbial population and organic residual mineralization under acidic conditions, which were resulted from fast decomposition of leaves after the first 6 months incubation. The increases in soil organic matter content, extractable K, CEC, aggregate stability and water holding capacity and the decreases in soil pH and bulk density provide favorable conditions for crop’s growth. 展开更多
关键词 soil physical and chemical properties Robinia pseudoacacia Gilgit-Baltistan
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部