An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of t...An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state elec- trolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes.展开更多
Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a prec...Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a precursor via a low-temperature solid-state route, then the precursor was reacted with Li2CO3 to synthesize LiNi0.5Mn1.5O4. The effects of calcination temperature and time on the physical properties and electrochemical performance of the products were investigated. Samples were characterized by thermal gravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray diffractometry(XRD), charge-discharge tests and cyclic voltammetry measurements. Scanning electron microscopy(SEM) image shows that as calcination temperature and time increase, the crystallinity of the samples is improved, and their grain sizes are obviously increased. It is found that LiNi0.5Mn1.5O4 calcined at 800 ℃ for 6 h exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the sample obtained possesses high capacity and excellent rate capability. When being discharged at a rate as high as 5C after 30 cycles, the as-prepared LiNi0.5Mn1.5O4 powders can still deliver a capacity of 101 mA·h/g, which shows to be a potential cathode material for high power batteries.展开更多
A new preparation method for a highly sinterable Y 2O 3 powder was developed, using the mixture of the powder with Al 2O 3 powder, a transparent yttrium aluminum garnet(YAG) ceramic was prepared at relatively low temp...A new preparation method for a highly sinterable Y 2O 3 powder was developed, using the mixture of the powder with Al 2O 3 powder, a transparent yttrium aluminum garnet(YAG) ceramic was prepared at relatively low temperature by a solid state reaction method. Yttrium nitrate was used as a mother salt, and aqueous ammonia was used as a precipitant reagent, the fine and dendritic precursor crystalline was prepared by adding 0.5% ammonium sulfate into the precipitation reaction system. The highly pure and low agglomerated Y 2O 3 powders were obtained by calcinating the precursor at 1 100 ℃, the primary particles are spherical and 60 nm in diameter. The mixture of Y 2O 3 and Al 2O 3 powders was calcinated, and the resulting mixture compact pressed in mold could be sintered to transparency under vacuum at 1 700 ℃. The sintered transparent YAG polycrystalline exhibits a homogeneous microstructure and its transmittance reaches 45% in the visible light region and 70% in the near infrared wavelength region.展开更多
Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with ...Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.展开更多
The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectro...The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries.展开更多
Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the s...Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.展开更多
LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3...LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3(PO4)2 coating forms a thin layer on the surface of the LiNi0.8Co0.2O2 material and a solid solution by interacting with the LiNi0.8Co0.2O2 core material during calcination at 700℃ for 4 h. Charge-discharge experiment results show that the Co3(PO4)2 coating improves the cycling stability of the LiNi0.8Co0.2O2 cathode material. The capacity retention of the pristine LiNi0.8Co0.2O2 cathode after 50 cycles is 83.6%, whereas it is 91.7% in the case of the LiNi0.8Co0.2O2 cathode coated with 1 wt.% Co3(PO4)2. Storage tests of the 4.35 V charged electrode at 60℃ after a month show that the Co3(POg)2-coated sample exhibits good storage properties compared with the pristine sample.展开更多
Robust and easy-to-handle solid-contact ion-selective electrodes (SC-ISEs) based on graphite paste have been developed for the potentiometric detection of NO-3 and NH+4 in environmental samples. Polypyrrole (PPy) has ...Robust and easy-to-handle solid-contact ion-selective electrodes (SC-ISEs) based on graphite paste have been developed for the potentiometric detection of NO-3 and NH+4 in environmental samples. Polypyrrole (PPy) has been used as intermediate layer and solid contact between the electron-conducting graphite paste substrate and the ion-conducting polyvinylchloride (PVC)-containing membrane with the immobilized ionophore. For the nitrate- and ammonium-selective electrodes, tridodecylmethylammonium nitrate (TDMA-NO3) and nonactin have been used as ion-complexing compounds, respectively. Both ISEs show nearly Nernstian response in the linear range from 10-5 mol/L to 10-1 mol/L with average slopes of >58 mV/decade. The ISEs possess short response times (<20 s).展开更多
We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball ...We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball milling in Ar atmosphere using β-AgI and RbI as raw materials. The ion-conducting properties of RbAg4 I5 were studied by alternating current(AC) impedance spectroscopy and the ionic conductivity at room temperature was estimated 0.21 S/m. The structure, morphology, and elemental composition of the RbAg4 I5 film were investigated. The Ag+ ion-conducting property of the prepared superioni-conductor film was exploited for ion–beam generation. The temperature and accelerating voltage dependences of the ion current were studied. Few nA current was obtained at the temperature of 196?C and the accelerating voltage of 10 kV.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51372228)the Shanghai Pujiang Program,China(Grant No.14PJ1403900)the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission,China(Grant No.14DZ2261200)
文摘An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and de signing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state elec- trolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes.
基金Project(2007CB613607) supported by the National Basic Research Program of China
文摘Spinel compound LiNi0.5Mn1.5O4 with high capacity and high rate capability was synthesized by solid-state reaction. At first, MnCl2·4H2O and NiCl2·6H2O were reacted with (NH4)2C2O4·H2O to produce a precursor via a low-temperature solid-state route, then the precursor was reacted with Li2CO3 to synthesize LiNi0.5Mn1.5O4. The effects of calcination temperature and time on the physical properties and electrochemical performance of the products were investigated. Samples were characterized by thermal gravimetric analysis(TGA), scanning electron microscopy(SEM), X-ray diffractometry(XRD), charge-discharge tests and cyclic voltammetry measurements. Scanning electron microscopy(SEM) image shows that as calcination temperature and time increase, the crystallinity of the samples is improved, and their grain sizes are obviously increased. It is found that LiNi0.5Mn1.5O4 calcined at 800 ℃ for 6 h exhibits a typical cubic spinel structure with a space group of Fd3m. Electrochemical tests demonstrate that the sample obtained possesses high capacity and excellent rate capability. When being discharged at a rate as high as 5C after 30 cycles, the as-prepared LiNi0.5Mn1.5O4 powders can still deliver a capacity of 101 mA·h/g, which shows to be a potential cathode material for high power batteries.
文摘A new preparation method for a highly sinterable Y 2O 3 powder was developed, using the mixture of the powder with Al 2O 3 powder, a transparent yttrium aluminum garnet(YAG) ceramic was prepared at relatively low temperature by a solid state reaction method. Yttrium nitrate was used as a mother salt, and aqueous ammonia was used as a precipitant reagent, the fine and dendritic precursor crystalline was prepared by adding 0.5% ammonium sulfate into the precipitation reaction system. The highly pure and low agglomerated Y 2O 3 powders were obtained by calcinating the precursor at 1 100 ℃, the primary particles are spherical and 60 nm in diameter. The mixture of Y 2O 3 and Al 2O 3 powders was calcinated, and the resulting mixture compact pressed in mold could be sintered to transparency under vacuum at 1 700 ℃. The sintered transparent YAG polycrystalline exhibits a homogeneous microstructure and its transmittance reaches 45% in the visible light region and 70% in the near infrared wavelength region.
基金This work was financially supported by the National Natural Science Foundation of China (No.50272012).
文摘Two types of spinel cathode powders, LiMn2O4 and LiAl0.1Mn1.9O3.9F0.1, were synthesized by solid-state reaction, X-ray diffraction (XRD) patterns of the prepared samples were identified as the spinel structure with a space group of Fd 3^- m. The cubic lattice parameter was determined from least-squares fitting of the XRD data. The LiAl0.1Mn1.9O3.9F0.1 sample showed a little lower initial capacity, but better cycling performance than the LiMn2O4 sample at both room temperature and an elevated temperature. The Vanderbilt method was used to test the electrochemical conductivity of the LiMn2O4 samples. The electrochemical impedance spectroscopy (EIS) method was employed to investigate the electrochemical properties of these spinel LiMn2O4 samples.
基金funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no.[307161] of M.W.
文摘The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries.
基金This research was supportedby a grant under‘Development of Key Materials and Fundamental Tech-nology for Secondary Battery’Program of the Ministry of Commerce,Industry and Energy,Korea.
文摘Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method. Various grinding aids were applied during milling in order to optimize the synthesis process. After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy. The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure. The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern. The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm. Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively. The EDX data indicate no incorporation of sodium or chlorine into the powders. Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.
基金the National Natural Science Foundation of China (No. 50604018)
文摘LiNi0.8Co0.2O2 particles were modified by Co3(PO4)2 coating. The effects of the Co3(PO4)2 coating on the structure and electrochemical properties of the LiNi0.8Co0.2O2 cathode material were investigated. The Co3(PO4)2 coating forms a thin layer on the surface of the LiNi0.8Co0.2O2 material and a solid solution by interacting with the LiNi0.8Co0.2O2 core material during calcination at 700℃ for 4 h. Charge-discharge experiment results show that the Co3(PO4)2 coating improves the cycling stability of the LiNi0.8Co0.2O2 cathode material. The capacity retention of the pristine LiNi0.8Co0.2O2 cathode after 50 cycles is 83.6%, whereas it is 91.7% in the case of the LiNi0.8Co0.2O2 cathode coated with 1 wt.% Co3(PO4)2. Storage tests of the 4.35 V charged electrode at 60℃ after a month show that the Co3(POg)2-coated sample exhibits good storage properties compared with the pristine sample.
文摘Robust and easy-to-handle solid-contact ion-selective electrodes (SC-ISEs) based on graphite paste have been developed for the potentiometric detection of NO-3 and NH+4 in environmental samples. Polypyrrole (PPy) has been used as intermediate layer and solid contact between the electron-conducting graphite paste substrate and the ion-conducting polyvinylchloride (PVC)-containing membrane with the immobilized ionophore. For the nitrate- and ammonium-selective electrodes, tridodecylmethylammonium nitrate (TDMA-NO3) and nonactin have been used as ion-complexing compounds, respectively. Both ISEs show nearly Nernstian response in the linear range from 10-5 mol/L to 10-1 mol/L with average slopes of >58 mV/decade. The ISEs possess short response times (<20 s).
基金Project supported by the National Natural Science Foundation of China(Grant No.11875210)China Postdoctoral Science Foundation(Grant No.2018M640724)+1 种基金the International Cooperation Program of Guangdong Provincial Science and Technology Plan Project(Grant No.2018A050506082)the Talent Project of Lingnan Normal University,China(Grant No.ZL1931)
文摘We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball milling in Ar atmosphere using β-AgI and RbI as raw materials. The ion-conducting properties of RbAg4 I5 were studied by alternating current(AC) impedance spectroscopy and the ionic conductivity at room temperature was estimated 0.21 S/m. The structure, morphology, and elemental composition of the RbAg4 I5 film were investigated. The Ag+ ion-conducting property of the prepared superioni-conductor film was exploited for ion–beam generation. The temperature and accelerating voltage dependences of the ion current were studied. Few nA current was obtained at the temperature of 196?C and the accelerating voltage of 10 kV.